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Background of Generative Modeling 

7

Definition of Domain and Generative Modeling

Unconditional vs Conditional Image Generation

Popular Image Generation Models

- Variational AutoEncoder (VAE)
- Generative Adversarial Networks (GAN)
- Flow-based Models
- Diffusion Models (DM)
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Background: Definition of Domain

Domain. a domain consists of two components:

9

a sample space a probability 
distribution

a sample from a domain

Example. Flickr-Faces-HQ (FFHQ) as the domain of image of human faces
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Background: Definition of Domain

Domain. a domain consists of two components:

11

a sample space a probability 
distribution

a sample from a domain

Example. SLIVER07 as the domain of 3D CT scans of livers
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Background: Generative Modeling

12

Generative Models. 
Given a set of training samples from a domain                           , generative modeling aims to learn 
to capture the distribution of these samples, i.e.,         . 

Result is a generative model G, encoding a probability distribution             .

Learning objective is to have             similar to          statistically.

After training, G can generate samples following            .

A set of training 
samples on human 
face dataset (         )

Input 
noise G Generated/fake 

image (           )
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Background: Generative Modeling

Discriminative Models learn the boundary 
in data space to be able to discriminate 
samples from different classes (e.g., ResNet 
classifier).

16

Generative Models learn the distribution of 
the data itself.
Later, by sampling from learned distribution, 
they can generate new samples.

Generative vs Discriminative Modeling
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Background of Generative Modeling 
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Definition of Domain and Generative Modeling

Unconditional vs Conditional Image Generation

Popular Image Generation Models

- Variational AutoEncoder (VAE)
- Generative Adversarial Networks (GAN)
- Flow-based Models
- Diffusion Models (DM)
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Background: Unconditional vs Conditional Image Generation

20

Image Generation: after learning generative model, typically: 

- image generation starts with sampling  a random noise z (also called latent code) as input. 
- This input as passed into generative model G which transforms it to a new sample G(z)

Gz G(z)

Latent Code
(random noise)

Generated
Image

This is called unconditional image generation as there is no conditioning mechanism to 
restrict image generation.

Milad Abdollahzadeh                           Medical Image Generation with Limited Data                           Feb 5, 2025



Background: Unconditional vs Conditional Image Generation

21

Image Generation: after learning generative model, typically: 

- image generation starts with sampling  a random noise z (also called latent code) as input. 
- This input as passed into generative model G which transforms it to a new sample G(z)

Gz G(z)

Latent Code
(random noise)

Generated
Image

This is called unconditional image generation as there is no conditioning mechanism to 
restrict image generation.

Milad Abdollahzadeh                           Medical Image Generation with Limited Data                           Feb 5, 2025



Background: Unconditional vs Conditional Image Generation
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Image Generation: after learning generative model, typically: 

- image generation starts with sampling  a random noise z (also called latent code) as input. 
- This input as passed into generative model G which transforms it to a new sample G(z)

If an additional condition c (e.g., class label, …) is used to steer sample generation towards c, 
the sample generation is called conditional image generation: G(z,c)

Gz G(z,c)
Latent Code

Generated
Imagec

Class Condition

peacock cabinet dog

For example, conditioning on class label:
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Background: Unconditional vs Conditional Image Generation
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If an additional condition c (e.g., class label, …) is used to steer sample generation towards c, 
the sample generation is called conditional image generation: G(z,c)

conditioning on text prompt

Gz G(z,c)
Latent Code

Generated
Imagec = text prompt

An art installation floats in the air, the 
installation is a cute shark made of candy, 

bright colors, light gray background, 
studio, contemporary art, minimalism, 

telephoto lens, large aperture photography,
Generator: Midjourney
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Background: Unconditional vs Conditional Image Generation
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If an additional condition c (e.g., class label, …) is used to steer sample generation towards c, 
the sample generation is called conditional image generation: G(z,c)

conditioning on text prompt

Gz G(z,c)
Latent Code

Generated
Imagec = text prompt

Fundoscopy image of the 
left retina with no 
Diabetic retinopathy

Generator: 
[MediSyn] Text-Guided Diffusion Models 

for Broad Medical 2D and 3D Image 
Synthesis (Stanford Medicine)
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If an additional condition c (e.g., class label, …) is used to steer sample generation towards c, 
the sample generation is called conditional image generation: G(z,c)

conditioning on text prompt

Gz G(z,c)
Latent Code

Generated
Imagec = text prompt

AP Frontal Chest X-ray 
(CXR) of a male patient

Generator: 
[MediSyn] Text-Guided Diffusion Models 

for Broad Medical 2D and 3D Image 
Synthesis (Stanford Medicine)
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Background: Unconditional vs Conditional Image Generation
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If an additional condition c (e.g., class label, …) is used to steer sample generation towards c, 
the sample generation is called conditional image generation: G(z,c)

Gz G(z,c)
Latent Code

Generated
Imagec = Layout 

(including bounding box)
Generator: Stable Diffusion

conditioning on layout
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Background of Generative Modeling 

30

Definition of Domain and Generative Modeling

Unconditional vs Conditional Image Generation

Popular Image Generation Models

- Variational AutoEncoder (VAE)
- Generative Adversarial Networks (GAN)
- Diffusion Models (DM)
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Generative Models: Variational Auto-Encoder (VAE)

31

Auto-Encoder (AE) consist of two networks:

● Encoder (E) learn to map input image to a low-dimensional latent representation
● Decoder (D) aims to reconstruct the image from that latent representation

latent representation reconstructed image

DE
input image

Learning objective:

AEs focus on dimensionality reduction, and the irregularity of their latent space makes them 
improper for sample generation.
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Generative Models: Variational Auto-Encoder (VAE)

34

Variational Auto-Encoder (VAE) aims to address this irregularity by enforcing E to return a normal 
distribution over latent space.

latent representation reconstructed image

DE
input image

Learning objective:

Vector-Quantized VAE (VQ-VAE) adds tokenization which quatizes the embedding into visual 
tokens for mitigating the challenge of direct maximization of likelihood in image space.

VAE: adding a regularizer 
on latent space distribution
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Generative Models: Generative Adversarial Networks (GANs)

GANs consist of two networks:

- Generator (G) learn to generate images 
from input noise (latent code)

- Discriminator (D) learn to distinguish 
between real and fake images

These two network compete in a 
min-max game:

37
Finally D is discarded and G is used for image generation.
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Generative Models: Diffusion Models (DMs)

Diffusion Models (DMs) leverage the concepts of the diffusion process from stochastic calculus and 
consists of two main steps:
  - Forward Diffusion Process consists of multiple steps in which low-level noise is added to each 
input image, where the scale of the noise varies at each step. The training data is progressively 
destroyed until it results in pure Gaussian noise.
  - Reverse Diffusion Process (Denoising Process) has same iterative procedure, but backwards: the 
noise is sequentially removed, and hence, the original image is recreated.

42

Forward Diffusion Process

Reverse Diffusion Process (Denoising Process)
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Given an uncorrupted training sample 
the noisy versions of this sample                  af\   are obtained with following markovian process: 

Important property of this formulation is the possibility to directly sample at time step t:  

This is usually done by reparameterization trick:
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Generative Models: Diffusion Models (DMs)

Diffusion Models (DMs) leverage the concepts of the diffusion process from stochastic calculus and 
consists of two main steps:
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Generate new samples from            starting from a random noise                           and following 
reverse steps:

We train a neural network (usually UNet) to approximate these steps 

This network predicts the mean and variance of the noise at time step t based on the input 
and is trained to maximize the posterior distribution (a variational lower bound of it) of the 
real samples:
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Generate new samples from            starting from a random noise                           and following 
reverse steps:

A new simplified framework, fixes the variance and rewrite the mean as a function of noise:

Then, the network is trained to predict noise itself instead of mean and variance
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Diffusion Models (DMs) leverage the concepts of the diffusion process from stochastic calculus and 
consists of two main steps:
  - Reverse Diffusion Process (Denoising Process) has same iterative procedure, but backwards: the 
noise is sequentially removed, and hence, the original image is recreated.
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Generate new samples from            starting from a random noise                           and following 
reverse steps:

A new simplified framework, fixes the variance and rewrite the mean as a function of noise:

Then, the network is trained to predict noise itself instead of mean and variance
Popularity of DMs start from HERE!!
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Major Advances in DMs

Latent Diffusion Model (LDM), and Stable Diffusion Model (SDM)
    trains the denoiser network (reverse diffusion) in the latent space instead of image space
    uses cross-attention mechanism for conditioning

57
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III. Approaches for Image Generation with Limited Data
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Major Challenges 

61

Challenges for Training Generative Models under Data Constraint

- Overfitting
- Frequency Bias
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Major Challenges: Training  
Overfitting to Training Data
Overfitting. a common issue in machine learning when powerful models start to memorize the 
training data instead of learning the generalizable semantics 

Mode Collapse. Under data constraints 
generative models are more prone to 
mode collapse 

Replicate Training Data. Under extreme cases, 
the generator just learns to replicate the 
training data

Example of mode e collapse on MNIST handwritten digits 10-shot training data 

Gz

Generated images are extremely similar to 
training data 
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Major Challenges: Training  
Frequency Bias: Neural networks learn lower frequencies first 

65
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Major Challenges: Training  
Frequency Bias: generative models prioritize fitting low-frequency components while 
disregarding the high-frequency components
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Frequency Bias: generative models prioritize fitting low-frequency components while 
disregarding the high-frequency components
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This bias worsens when data for training is limited. 

Exclusion of these high-frequency components which encode intricate image details 
significantly impacts the quality of generated samples

Generated images by FastGAN showing loss of 
high-frequency details.Training data
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Outline

I. Background of Generative Models

II. Major Challenges of Training Generative Models with Limited Data

III. Approaches for Image Generation with Limited Data

68
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Approaches   
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Approaches for Image Generation with Limited Data (Training Generative 
Models with Limited Data):

1. Transfer Learning
2. Data Augmentation
3. Network Architecture
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Approaches for Image Generation with Limited Data (Training Generative 
Models with Limited Data):

1. Transfer Learning
2. Data Augmentation
3. Network Architecture

Milad Abdollahzadeh                           Medical Image Generation with Limited Data                           Feb 5, 2025



Approaches: Transfer Learning

Transfer Learning in Generative Modeling: 
Transfer the knowledge of a pre-trained generator (on a large and diverse dataset) to a target domain 
with limited data

71

GSz GTz
Knowledge Transfer

➠ Initialize the generator GT with weights of pre-trained generator GS
➠ Fine-tune GT using limited data from target domain
➠ General knowledge (domain-agnostic) from GS is useful for target domain, and the 
domain-specific knowledge needs to be acquired using limited data from target domain

Pre-trained generator on 
“LSUN-Church” domain

Adapted generator to “Van 
Gogh’s House” using limited data
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Approaches: Transfer Learning

Transfer Learning in Generative Modeling: 
Transfer the knowledge of a pre-trained generator (on a large and diverse dataset) to a target domain 
with limited data

75

GSz GTz
Knowledge Transfer

➠ Initialize the generator GT with weights of pre-trained generator GS
➠ Fine-tune GT using limited data from target domain
➠ General knowledge (domain-agnostic) from GS is useful for target domain, and the 
domain-specific knowledge needs to be acquired using limited data from target domain

Pre-trained generator on 
“LSUN-Church” domain

Adapted generator to “Van 
Gogh’s House” using limited data

Similar approach can be applied to 
Medical Image Generation conditioned 

on having a powerful source model 
trained on medical data!
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Approaches: Transfer Learning

Major Limitation
Because of data constraints on target domain, the general knowledge can be degraded during 
fine-tuning generator on target data (acquiring the domain-specific knowledge)

76

Example. Adapting a generator trained on human faces (FFHQ) to 
painting of human faces (e.g., Fernand Léger):

● Shared (general) knowledge: face structure, diversity in pose, 
hairstyle, …

● Domain-specific knowledge: the style of the paining with 
Fernand Léger

Result. Conventional transfer learning results in missing 
general knowledge: losing diversity and only containing the 
target style

Training 
examples

Generated images by 
adapting a pre-trained 
StyleGAN on FFHQ to 

Fernand Léger Painting
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Approaches: Transfer Learning

Major Limitation
Because of data constraints on target domain, the general knowledge can be degraded during 
fine-tuning generator on target data (acquiring the domain-specific knowledge)

78

Example. Adapting a generator trained on human faces (FFHQ) to 
painting of human faces (e.g., Fernand Léger):

● Shared (general) knowledge: face structure, diversity in pose, 
hairstyle, …

● Domain-specific knowledge: the style of the paining with 
Fernand Léger

Result. Conventional transfer learning results in missing 
general knowledge: losing diversity and only containing the 
target style

Training 
examples

Generated images by 
adapting a pre-trained 
StyleGAN on FFHQ to 

Fernand Léger Painting
Li, Yijun, et al. "Few-shot image generation with elastic weight consolidation." NeurIPS’20.
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Approaches: Transfer Learning

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to 
preserve the knowledge in the pre-trained generator

79

Cross-Domain Correspondence (CDC)
Key Observation. Overfitting in transfer 
learning, leads to the loss of 
correspondence between images 
generated by source and target domain

Objective. Add a regularizer to preserve the correspondence 
between generated images before and after adapting the 
generator to target domain

Ojha, Utkarsh, et al. "Few-shot image generation via cross-domain correspondence." CVPR’21.
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Approaches: Transfer Learning

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to 
preserve the knowledge in the pre-trained generator

83

Cross-Domain Correspondence (CDC) Approach:

● Sample N+1 noise vectors
● Compute pairwise similarity scores si between 

images generated by these noise vectors
● Construct N-way probability distribution by 

applying softmax on similarity scores

● Enforce adapted model to have similar 
distributions to the source

Ojha, Utkarsh, et al. "Few-shot image generation via cross-domain correspondence." CVPR’21.
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Approaches: Transfer Learning

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to 
preserve the knowledge in the pre-trained generator
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Cross-Domain Correspondence (CDC)
Qualitative Results. 
10-shot adaptation 
(FFHQ⇒ Sketches)

Ojha, Utkarsh, et al. "Few-shot image generation via cross-domain correspondence." CVPR’21.
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Approaches   
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Approaches for Image Generation with Limited Data (Training Generative 
Models with Limited Data):

1. Transfer Learning
2. Data Augmentation
3. Network Architecture
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Approaches: Data Augmentation

Data Augmentation in Generative Modeling 

● Data augmentation aims to increase the quantity and diversity of the training data by applying some 
transformations in real data, e.g., adding noise, rotating images, …

● Increased quantity can prevent overfitting of the generative model

89
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Approaches: Data Augmentation

Major Limitation of Classical Data Augmentation in Generative Learning
Generator learns the augmented data distribution instead of the real distribution and generate image with 
same transformations

90

Gz
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Approaches: Data Augmentation

91

Image-Level Augmentation: Apply data transformation on image space.

Adaptive Data Augmentation (ADA): apply augmentation to the both real and fake images with an 
adjustable probability based on the training dynamics 

Approach. ADA includes following components:

● Augmentation is applied to both real and fake images 
(in training both D and G)

● The augmentation is applied with a probability p<1 to 
enable the occurrence of the real distribution

● The strength of the augmentation (p) is adjusted based 
on the degree of overfitting

● Two heuristics are proposed to monitor the overfitting

r=0 means no overfitting, and r=1 indicates complete overfitting

Karras, Tero, et al. "Training generative adversarial networks with limited data." NeurIPS’20.
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Approaches: Data Augmentation
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Image-Level Augmentation: Apply data transformation on image space.

Adaptive Data Augmentation (ADA): apply augmentation to the both real and fake images with an 
adjustable probability based on the training dynamics 

Results
MetFaces dataset (1336 
images) of art paintings

Karras, Tero, et al. "Training generative adversarial networks with limited data." NeurIPS’20.
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Approaches: Data Augmentation

97

Image-Level Augmentation: Apply data transformation on image space.

Adaptive Data Augmentation (ADA): apply augmentation to the both real and fake images with an 
adjustable probability based on the training dynamics 

Results
BreCaHAD dataset (1944 
images) for breast 
cancer annotation

Karras, Tero, et al. "Training generative adversarial networks with limited data." NeurIPS’20.
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Approaches: Data Augmentation
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Image-Level Augmentation: Apply data transformation on image space.

Adaptive Data Augmentation (ADA)

Karras, Tero, et al. "Training generative adversarial networks with limited data." NeurIPS’20.
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Approaches: Data Augmentation
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Image-Level Augmentation: Apply data transformation on image space.

Adaptive Data Augmentation (ADA)

Karras, Tero, et al. "Training generative adversarial networks with limited data." NeurIPS’20.

Start from a 
pre-trained 

StyleGAN2-ADA on 
FFHQ and fine-tune 

on the SLIVER07 
dataset
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Approaches   
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Approaches for Image Generation with Limited Data (Training Generative 
Models with Limited Data):

1. Transfer Learning
2. Data Augmentation
3. Network Architecture
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Comprehensive Review: Network Architecture

Network Architecture 
Design specific architectures for the generators to improve their training performance under data 
constraints. Like designing shallow/sparse architectures to prevent over-parameterization.

101

Primary Challenge/Limitation 

● When aiming to design a new architecture, the process of discovering optimal hyperparameters can be 
laborious

● Designing new architecture prevents leveraging the powerful pre-trained generators
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Primary Challenge/Limitation 

● When aiming to design a new architecture, the process of discovering optimal hyperparameters can be 
laborious

● Designing new architecture prevents leveraging the powerful pre-trained generators
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Comprehensive Review: Network Architecture

103

Feature Enhancement: Design additional modules to enhance/retain the features of the generator

FastGAN has three major design choices: 
  i) Using a compact size network for both G and D in GAN 
  ii) introducing Skip-layer excitation for G for better gradient flow
  iii) adding self-supervised task for D 

Liu, Bingchen, et al. "Towards faster and stabilized gan training for high-fidelity few-shot image synthesis." ICLR’20.

Results of training FastGAN from scratch on 10242 resolution using single RTX 2080-Ti GPU with only 
1000 images. Left: 20 hours on Nature photos; Right: 10 hours on FFHQ.
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Comprehensive Review: Network Architecture
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Feature Enhancement: Design additional modules to enhance/retain the features of the generator

FastGAN 

Liu, Bingchen, et al. "Towards faster and stabilized gan training for high-fidelity few-shot image synthesis." ICLR’20.

Design of Generator (G): 

● Use a single Conv-layer for each resolution
● Use skip-layer excitation including skip connection and connection between different resolutions for 

better gradient flow during training G
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Comprehensive Review: Network Architecture
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Feature Enhancement: Design additional modules to enhance/retain the features of the generator

FastGAN 

Liu, Bingchen, et al. "Towards faster and stabilized gan training for high-fidelity few-shot image synthesis." ICLR’20.

Design of Discriminator (D): 

● Use a compact design for D
● Add reconstruction loss in two different resolution (additional task as auto-encoder) to improve learning 

of D using additional supervisory signal
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Comprehensive Review: Network Architecture

108

Feature Enhancement: Design additional modules to enhance/retain the features of the generator

FastGAN 

Liu, Bingchen, et al. "Towards faster and stabilized gan training for high-fidelity few-shot image synthesis." ICLR’20.

https://github.com/RichardObi/medigan
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Comprehensive Review: Network Architecture

109

Feature Enhancement: Design additional modules to enhance/retain the features of the generator

FastGAN 

Liu, Bingchen, et al. "Towards faster and stabilized gan training for high-fidelity few-shot image synthesis." ICLR’20.
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