The **First** (TvAI) Skyroom International Virtual Congress on the practical Application of Artificial Intelligence in Medical Sciences

Date & Time: 1-5 February 2025 (09:00 Am . 12:00)

^{تاریخوزمان برگزاری: ۲۳ تا ۱۷ بهمن ۲۰۰۳ (۲۰۰۰ مید)} **اولین** کنگره بین المللی مجازی <mark>کاربرد هو ش مصنوعی</mark> در علوم یز شکی

Milad Abdollahzadeh Singapore Institute of Technology BetterData AI

Speaker

Milad Abdollahzadeh

Research Manager, Singapore Institute of Technology Research Scientist, Betterdata AI

Medical Image Generation with Limited Data

Methods GGANTransfer [156] W3 F0C [122] W5 F0C [122] W5 F0C [129] W5 F0C [209] D0PM-PA [221] W5 F0C [209] D0PM-PA [221] W5 F0C [209] CGAN [14] W5 F121] W5

CSR [49] ProSC [114] F3 [79] HyperDomainNet [5]

HyperDomainNet [5] Pirs (207) Price (207) Price (204) ProamBecton (143) (109) BCIP- Price (143) (109) BCIP- Price (149) Product (143) (109) Product (143) (143) Product (143) Pr

SISTA 167 AdAM (212) GAN-Memory [26 GAN-Memory [26 GAN-GAN 1741 AdaFMGAN [210] DynaGAN [81] PCL [213] CL [213]

C (96) C (97) C (97)

SELATION SEL

Natural-Language Guided

Adaptation-Aware

Image-level Augmentation Feature-level

Augmentation Transformation-Driven Design Optimization

Transformation

Fusion

Progressive Training

> Non-Progressive Training

Meta-learning

Modelling Internal Patch Distribution

Tasks Approaches Regularizer Multi-Task Objectives Contrastive uGM-1 Learning Masking Knowledge Network Prototype Learning Other Multi-Task Objectives Data Augmentation Feature Enhancement Exploiting Frequency Components Ensemble Large Pretrained Vision Models Dynamic Network Frequency-Based Regularizer-based Fine-Tuning uGM-2 Transfer Learning Latent Space Modulation

uGM-3

CGM-1

cGM-2

cGM-3

IGM

SGM

A Survey on Generative Modeling with Limited Data, Few Shots, and Zero Shot

MILAD ABDOLLAHZADEH, TOUBA MALEKZADEH*, CHRISTOPHER T.H. TEO*, KESHIGEYAN CHANDRASEGARAN*, GUIMENG LIU, and NGAI-MAN CHEUNG[†], Singapore University of Technology and Design (SUTD), Singapore

8

>> C All Bookmark

A Survey on Generative Modeling with Limited Data, Few Shots, and Zero Shot

MILAD ABDOLLAHZADEH, TOUBA MALEKZADEH*, CHRISTOPHER T.H. TEO*, KESHIGEYAN CHANDRASEGARAN*, GUIMENG LIU, and NGAI-MAN CHEUNG[†], Singapore University of Technology and Design (SUTD), Singapore

A Survey on Generative Modeling with Limited Data, Few Shots, and Zero Shot

O_research
O_create_2024
dso_project_2024
proposal_2024

A Survey on Generative Mode × + C S https://gmdc-survey.github.io

> Milad Abdollahzadeh, Touba Malekzadeh*, Christopher T. H. Teo*, Keshigeyan Chandrasegaran*, Guimeng Liu, Ngai-Man Cheung*, * Equal Contribution † Corresponding Author

> > Singapore University of Technology and Design

Outline

- I. Background of Generative Models
- II. Major Challenges of Training Generative Models with Limited Data
- III. Approaches for Image Generation with Limited Data

Outline

I. Background of Generative Models

II. Major Challenges of Training Generative Models with Limited Data

III. Approaches for Image Generation with Limited Data

Definition of Domain and Generative Modeling

Unconditional vs Conditional Image Generation

Popular Image Generation Models

- Variational AutoEncoder (VAE)
- Generative Adversarial Networks (GAN)
- Flow-based Models
- Diffusion Models (DM)

Definition of Domain and Generative Modeling

Unconditional vs Conditional Image Generation

Popular Image Generation Models

- Variational AutoEncoder (VAE)
- Generative Adversarial Networks (GAN)
- Flow-based Models
- Diffusion Models (DM)

Background: **Definition of Domain**

Domain. a domain consists of two components:

a sample from a domain

 $x \sim P_{data} \in X$

Example. Flickr-Faces-HQ (FFHQ) as the domain of image of human faces

Background: **Definition of Domain**

Domain. a domain consists of two components:

a sample from a domain

 $x \sim P_{data} \in X$

Example. Flickr-Faces-HQ (FFHQ) as the domain of image of human faces

Background: **Definition of Domain**

Domain. a domain consists of two components:

a sample from a domain

 $x \sim P_{data} \in X$

Example. SLIVER07 as the domain of 3D CT scans of livers

...

Generative Models.

Given a set of training samples from a domain $\mathcal{D} = \{X, P_{data}\}$, generative modeling aims to learn to capture the distribution of these samples, i.e., P_{data} .

Result is a **generative model G**, encoding a probability distribution *P*_{model}.

Learning objective is to have P_{model} similar to P_{data} statistically.

A set of training samples on human face dataset (P_{data})

Generative Models.

Given a set of training samples from a domain $\mathcal{D} = \{X, P_{data}\}$, generative modeling aims to learn to capture the distribution of these samples, i.e., P_{data} .

Result is a **generative model G**, encoding a probability distribution *P*_{model}.

Learning objective is to have P_{model} similar to P_{data} statistically.

A set of training samples on human face dataset (P_{data})

Generative Models.

Given a set of training samples from a domain $\mathcal{D} = \{X, P_{data}\}$, generative modeling aims to learn to capture the distribution of these samples, i.e., P_{data} .

Result is a **generative model G**, encoding a probability distribution *P*_{model}.

Learning objective is to have P_{model} similar to P_{data} statistically.

A set of training samples on human face dataset (P_{data})

Generative Models.

Given a set of training samples from a domain $\mathcal{D} = \{X, P_{data}\}$, generative modeling aims to learn to capture the distribution of these samples, i.e., P_{data} .

Result is a **generative model G**, encoding a probability distribution *P*_{model}.

Learning objective is to have P_{model} similar to P_{data} statistically.

A set of training samples on human face dataset (P_{data})

Generative vs Discriminative Modeling

Discriminative Models learn the boundary in data space to be able to discriminate samples from different classes (e.g., ResNet classifier).

Generative Models learn the distribution of the data itself. Later, by sampling from learned distribution, they can **generate new samples**.

Generative vs Discriminative Modeling

Discriminative Models learn the boundary in data space to be able to discriminate samples from different classes (e.g., ResNet classifier).

Generative Models learn the distribution of the data itself. Later, by sampling from learned distribution, they can **generate new samples**.

Generative vs Discriminative Modeling

Discriminative Models learn the boundary in data space to be able to discriminate samples from different classes (e.g., ResNet classifier).

Generative Models learn the distribution of the data itself. Later, by sampling from learned distribution,

Definition of Domain and Generative Modeling

Unconditional vs Conditional Image Generation

Popular Image Generation Models

- Variational AutoEncoder (VAE)
- Generative Adversarial Networks (GAN)
- Flow-based Models
- Diffusion Models (DM)

Image Generation: after learning generative model, typically:

- image generation starts with sampling a random noise z (also called latent code) as input.
- This input as passed into generative model G which transforms it to a new sample G(z)

This is called **unconditional image generation** as there is no conditioning mechanism to restrict image generation.

Image Generation: after learning generative model, typically:

- image generation starts with sampling a random noise z (also called latent code) as input.
- This input as passed into generative model G which transforms it to a new sample G(z)

This is called **unconditional image generation** as there is no conditioning mechanism to restrict image generation.

Image Generation: after learning generative model, typically:

- image generation starts with sampling a random noise z (also called latent code) as input.
- This input as passed into generative model G which transforms it to a new sample G(z)

If **an additional condition c** (e.g., class label, ...) is used to steer sample generation towards c, the sample generation is called **conditional image generation**: G(z,c)

For example, **conditioning on class label**:

Image Generation: after learning generative model, typically:

- image generation starts with sampling a random noise z (also called latent code) as input.
- This input as passed into generative model G which transforms it to a new sample G(z)

If **an additional condition c** (e.g., class label, ...) is used to steer sample generation towards c, the sample generation is called **conditional image generation**: G(z,c)

For example, conditioning on class label:

If **an additional condition c** (e.g., class label, ...) is used to steer sample generation towards c, the sample generation is called **conditional image generation**: G(z,c)

conditioning on text prompt

An art installation floats in the air, the installation is a cute shark made of candy, bright colors, light gray background, studio, contemporary art, minimalism, telephoto lens, large aperture photography,

Generator: Midjourney

Feb 5, 2025

Background: Unconditional vs Conditional Image Generation

If **an additional condition c** (e.g., class label, ...) is used to steer sample generation towards c, the sample generation is called **conditional image generation**: G(z,c)

conditioning on text prompt

bright colors, light gray background, studio, contemporary art, minimalism, telephoto lens, large aperture photography

Generator: Midjourney

Feb 5, 2025

Background: Unconditional vs Conditional Image Generation

If **an additional condition c** (e.g., class label, ...) is used to steer sample generation towards c, the sample generation is called **conditional image generation**: G(z,c)

conditioning on text prompt

Generator: [MediSyn] Text-Guided Diffusion Models for Broad Medical 2D and 3D Image Synthesis (Stanford Medicine)

Feb 5, 2025

Background: Unconditional vs Conditional Image Generation

If **an additional condition c** (e.g., class label, ...) is used to steer sample generation towards c, the sample generation is called **conditional image generation**: G(z,c)

conditioning on text prompt

Generator: [**MediSyn]** Text-Guided Diffusion Models for Broad Medical 2D and 3D Image Synthesis (Stanford Medicine)

If **an additional condition c** (e.g., class label, ...) is used to steer sample generation towards c, the sample generation is called **conditional image generation**: G(z,c)

conditioning on layout

If **an additional condition c** (e.g., class label, ...) is used to steer sample generation towards c, the sample generation is called **conditional image generation**: G(z,c)

conditioning on layout

Definition of Domain and Generative Modeling

Unconditional vs Conditional Image Generation

Popular Image Generation Models

- Variational AutoEncoder (VAE)
- Generative Adversarial Networks (GAN)
- Diffusion Models (DM)

Auto-Encoder (AE) consist of two networks:

- **Encoder (E)** learn to map input image to a low-dimensional latent representation
- **Decoder (D)** aims to reconstruct the image from that latent representation

Learning objective:

$$\mathcal{L}_{rec} = ||x - D(z)||_2$$

AEs focus on **dimensionality reduction**, and the **irregularity of their latent space** makes them improper for sample generation.

Auto-Encoder (AE) consist of two networks:

- **Encoder (E)** learn to map input image to a low-dimensional latent representation
- **Decoder (D)** aims to reconstruct the image from that latent representation

Learning objective:

$$\mathcal{L}_{rec} = ||x - D(z)||_2$$

AEs focus on **dimensionality reduction**, and the **irregularity of their latent space** makes them improper for sample generation.

Auto-Encoder (AE) consist of two networks:

- **Encoder (E)** learn to map input image to a low-dimensional latent representation
- **Decoder (D)** aims to reconstruct the image from that latent representation

Learning objective:

$$\mathcal{L}_{rec} = ||x - D(z)||_2$$

AEs focus on **dimensionality reduction**, and the **irregularity of their latent space** makes them improper for sample generation.

Variational Auto-Encoder (VAE) aims to address this irregularity by enforcing **E** to return a normal distribution over latent space.

Learning objective:

$$\mathcal{L} = ||x - D(z)||_2 + KL(\mathcal{N}(\mu, \sigma^2), \mathcal{N}(0, I))$$

Vector-Quantized VAE (VQ-VAE) adds tokenization which quatizes the embedding into visual tokens for mitigating the challenge of direct maximization of likelihood in image space.

Variational Auto-Encoder (VAE) aims to address this irregularity by enforcing **E** to return a normal distribution over latent space.

Learning objective:

$$\mathcal{L} = ||x - D(z)||_2 + KL(\mathcal{N}(\mu, \sigma^2), \mathcal{N}(0, I))$$

Vector-Quantized VAE (VQ-VAE) adds tokenization which quatizes the embedding into visual tokens for mitigating the challenge of direct maximization of likelihood in image space.

Variational Auto-Encoder (VAE) aims to address this irregularity by enforcing **E** to return a normal distribution over latent space.

Learning objective:

$$\mathcal{L} = ||x - D(z)||_2 + KL(\mathcal{N}(\mu, \sigma^2), \mathcal{N}(0, I))$$

Vector-Quantized VAE (VQ-VAE) adds tokenization which quatizes the embedding into visual tokens for mitigating the challenge of direct maximization of likelihood in image space.
GANs consist of **two networks**:

- **Generator (G)** learn to generate images from input noise (latent code)

- **Discriminator (D)** learn to distinguish between **real** and **fake** images

These two network compete in a **min-max game**:

 $min_{G} max_{D} \vee (D, G) = \mathbb{E}_{x \sim p_{deta}}[log(D(x)] + \mathbb{E}_{z \sim p_{deta}}[log(1 - D(G(z))]]$

GANs consist of **two networks**:

- **Generator (G)** learn to generate images from input noise (latent code)
- **Discriminator (D)** learn to distinguish between **real** and **fake** images

These two network compete in a **min-max game**:

 $min_{G} max_{D} \vee (D, G) = \mathbb{E}_{x \sim p_{det}}[log(D(x)] + \mathbb{E}_{z \sim p_{det}}[log(1 - D(G(z))]]$

GANs consist of **two networks**:

- **Generator (G)** learn to generate images from input noise (latent code)

- **Discriminator (D)** learn to distinguish between **real** and **fake** images

These two network compete in a **min-max game**:

 $min_{G} max_{D} \vee (D, G) = \mathbb{E}_{x \sim p_{det}}[log(D(x)] + \mathbb{E}_{z \sim p_{det}}[log(1 - D(G(z))]]$

GANs consist of **two networks**:

- **Generator (G)** learn to generate images from input noise (latent code)

- **Discriminator (D)** learn to distinguish between **real** and **fake** images

These two network compete in a **min-max game**:

 $min_{G} max_{D} \vee (D, G) = \mathbb{E}_{x \sim p_{desc}}[log(D(x)] + \mathbb{E}_{z \sim p_{desc}}[log(1 - D(G(z))]]$

GANs consist of **two networks**:

- **Generator (G)** learn to generate images from input noise (latent code)

- **Discriminator (D)** learn to distinguish between **real** and **fake** images

These two network compete in a **min-max game**:

 $min_{G} max_{D} \vee (D, G) = \mathbb{E}_{x \sim p_{data}} [log(D(x)] + \mathbb{E}_{z \sim p_{data}} [log(1 - D(G(z))]]$

Diffusion Models (DMs) leverage the **concepts of the diffusion process** from stochastic calculus and consists of two main steps:

- Forward Diffusion Process consists of multiple steps in which low-level noise is added to each input image, where the scale of the noise varies at each step. The training data is progressively destroyed until it results in pure Gaussian noise.

- Reverse Diffusion Process (Denoising Process) has same iterative procedure, but backwards: the noise is sequentially removed, and hence, the original image is recreated.

Forward Diffusion Process

Reverse Diffusion Process (Denoising Process)

Diffusion Models (DMs) leverage the **concepts of the diffusion process** from stochastic calculus and consists of two main steps:

- Forward Diffusion Process consists of multiple steps in which low-level noise is added to each input image, where the scale of the noise varies at each step. The training data is progressively destroyed until it results in pure Gaussian noise.

- Reverse Diffusion Process (Denoising Process) has same iterative procedure, but backwards: the noise is sequentially removed, and hence, the original image is recreated.

Forward Diffusion Process

Diffusion Models (DMs) leverage the **concepts of the diffusion process** from stochastic calculus and consists of two main steps:

- Forward Diffusion Process consists of multiple steps in which low-level noise is added to each input image, where the scale of the noise varies at each step. The training data is progressively destroyed until it results in pure Gaussian noise.

- Reverse Diffusion Process (Denoising Process) has same iterative procedure, but backwards: the noise is sequentially removed, and hence, the original image is recreated.

Forward Diffusion Process

Diffusion Models (DMs) leverage the **concepts of the diffusion process** from stochastic calculus and consists of two main steps:

- **Forward Diffusion Process** consists of multiple steps in which low-level noise is added to each input image, where the scale of the noise varies at each step. The training data is progressively destroyed until it results in pure Gaussian noise.

- **Reverse Diffusion Process (Denoising Process)** has same iterative procedure, but backwards: the noise is sequentially removed, and hence, the original image is recreated.

Forward Diffusion Process

Diffusion Models (DMs) leverage the **concepts of the diffusion process** from stochastic calculus and consists of two main steps:

- **Forward Diffusion Process** consists of multiple steps in which low-level noise is added to each input image, where the scale of the noise varies at each step. The training data is progressively destroyed until it results in pure Gaussian noise.

Given an uncorrupted training sample $x_0 \sim p(x_0)$

the noisy versions of this sample $x_1, x_2 \dots, x_T$ are obtained with following markovian process:

$$p(x_t|x_{t-1}) = \mathcal{N}\left(x_t; \sqrt{1-\beta_t} \cdot x_{t-1}, \beta_t \cdot \mathbf{I}\right), \forall t \in \{1, \dots, T\}$$

Important property of this formulation is the possibility to directly sample at time step t:

$$p(x_t|x_0) = \mathcal{N}\left(x_t; \sqrt{\hat{\beta}_t} \cdot x_0, (1-\hat{\beta}_t) \cdot \mathbf{I}\right), \quad \hat{\beta}_t = \prod_{i=1}^t \alpha_i \text{ and } \alpha_t = 1-\beta$$

This is usually done by reparameterization trick: $x_t = \sqrt{\hat{\beta}_t} \cdot x_0 + \sqrt{(1 - \hat{\beta}_t)} \cdot z_t$

Diffusion Models (DMs) leverage the **concepts of the diffusion process** from stochastic calculus and consists of two main steps:

- **Forward Diffusion Process** consists of multiple steps in which low-level noise is added to each input image, where the scale of the noise varies at each step. The training data is progressively destroyed until it results in pure Gaussian noise.

Given an uncorrupted training sample $x_0 \sim p(x_0)$

the noisy versions of this sample $x_1, x_2 \ldots, x_T$ are obtained with following markovian process:

$$p(x_t|x_{t-1}) = \mathcal{N}\left(x_t; \sqrt{1-\beta_t} \cdot x_{t-1}, \beta_t \cdot \mathbf{I}\right), \forall t \in \{1, \dots, T\}$$

Important property of this formulation is the possibility to directly sample at time step t:

$$p(x_t|x_0) = \mathcal{N}\left(x_t; \sqrt{\hat{\beta}_t} \cdot x_0, (1-\hat{\beta}_t) \cdot \mathbf{I}\right), \quad \hat{\beta}_t = \prod_{i=1}^t \alpha_i \text{ and } \alpha_t = 1-\beta$$

This is usually done by reparameterization trick: $x_t = \sqrt{\hat{\beta}_t \cdot x_0} + \sqrt{(1 - \hat{\beta}_t)} \cdot z_t$

Diffusion Models (DMs) leverage the **concepts of the diffusion process** from stochastic calculus and consists of two main steps:

- **Forward Diffusion Process** consists of multiple steps in which low-level noise is added to each input image, where the scale of the noise varies at each step. The training data is progressively destroyed until it results in pure Gaussian noise.

Given an uncorrupted training sample $\, x_0 \, \sim \, p(x_0) \,$

the noisy versions of this sample $x_1, x_2 \dots, x_T$ are obtained with following markovian process:

$$p(x_t|x_{t-1}) = \mathcal{N}\left(x_t; \sqrt{1-\beta_t} \cdot x_{t-1}, \beta_t \cdot \mathbf{I}\right), \forall t \in \{1, \dots, T\}$$

Important property of this formulation is the possibility to directly sample at time step t:

$$p(x_t|x_0) = \mathcal{N}\left(x_t; \sqrt{\hat{eta}_t} \cdot x_0, (1 - \hat{eta}_t) \cdot \mathbf{I}
ight), \ \ \hat{eta}_t = \prod_{i=1}^t lpha_i \ ext{and} \ \ lpha_t = 1 - eta_t$$

This is usually done by reparameterization trick: $x_t = \sqrt{\hat{\beta}_t} \cdot x_0 + \sqrt{(1 - \hat{\beta}_t)} \cdot z_t$

Diffusion Models (DMs) leverage the **concepts of the diffusion process** from stochastic calculus and consists of two main steps:

- **Reverse Diffusion Process (Denoising Process)** has same iterative procedure, but backwards: the noise is sequentially removed, and hence, the original image is recreated.

Generate new samples from $p(x_0)$ starting from a random noise $x_T \sim \mathcal{N}(0, \mathbf{I})$ and following reverse steps: $p(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu(x_t, t), \Sigma(x_t, t))$

We train a neural network (usually UNet) to approximate these steps

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

$$\mathcal{L}_{vlb} = -\log p_{\theta}(x_0|x_1) + KL\left(p(x_T|x_0) \| \pi(x_T)\right) + \sum_{t>1} KL(p(x_{t-1}|x_t, x_0) \| p_{\theta}(x_{t-1}|x_t))$$

Diffusion Models (DMs) leverage the **concepts of the diffusion process** from stochastic calculus and consists of two main steps:

- **Reverse Diffusion Process (Denoising Process)** has same iterative procedure, but backwards: the noise is sequentially removed, and hence, the original image is recreated.

Generate new samples from $p(x_0)$ starting from a random noise $x_T \sim \mathcal{N}(0, \mathbf{I})$ and following reverse steps: $p(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu(x_t, t), \Sigma(x_t, t))$

We train a neural network (usually UNet) to approximate these steps

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

$$\mathcal{L}_{vlb} = -\log p_{\theta}(x_0|x_1) + KL(p(x_T|x_0)||\pi(x_T)) + \sum_{t>1} KL(p(x_{t-1}|x_t, x_0)||p_{\theta}(x_{t-1}|x_t))$$

Diffusion Models (DMs) leverage the **concepts of the diffusion process** from stochastic calculus and consists of two main steps:

- **Reverse Diffusion Process (Denoising Process)** has same iterative procedure, but backwards: the noise is sequentially removed, and hence, the original image is recreated.

Generate new samples from $p(x_0)$ starting from a random noise $x_T \sim \mathcal{N}(0, \mathbf{I})$ and following reverse steps: $p(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu(x_t, t), \Sigma(x_t, t))$

We **train a neural network** (usually UNet) to approximate these steps $p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$

$$\mathcal{L}_{vlb} = -\log p_{\theta}(x_0|x_1) + KL\left(p(x_T|x_0) \| \pi(x_T)\right) + \sum_{t>1} KL(p(x_{t-1}|x_t, x_0) \| p_{\theta}(x_{t-1}|x_t))$$

Diffusion Models (DMs) leverage the **concepts of the diffusion process** from stochastic calculus and consists of two main steps:

- **Reverse Diffusion Process (Denoising Process)** has same iterative procedure, but backwards: the noise is sequentially removed, and hence, the original image is recreated.

Generate new samples from $p(x_0)$ starting from a random noise $x_T \sim \mathcal{N}(0, \mathbf{I})$ and following reverse steps: $p(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu(x_t, t), \Sigma(x_t, t))$

We train a neural network (usually UNet) to approximate these steps

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

$$\mathcal{L}_{vlb} = -\log p_{\theta}(x_0|x_1) + KL\left(p(x_T|x_0) \| \pi(x_T)\right) + \sum_{t>1} KL(p(x_{t-1}|x_t, x_0) \| p_{\theta}(x_{t-1}|x_t))$$

Diffusion Models (DMs) leverage the **concepts of the diffusion process** from stochastic calculus and consists of two main steps:

- **Reverse Diffusion Process (Denoising Process)** has same iterative procedure, but backwards: the noise is sequentially removed, and hence, the original image is recreated.

Generate new samples from $p(x_0)$ starting from a random noise $x_T \sim \mathcal{N}(0, \mathbf{I})$ and following reverse steps: $p(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu(x_t, t), \Sigma(x_t, t))$

A **new simplified framework**, fixes the variance and rewrite the mean as a function of noise:

$$\mu_{\theta} = \frac{1}{\sqrt{\alpha_t}} \cdot \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \hat{\beta}_t}} \cdot z_{\theta}(x_t, t) \right)$$

$$\mathcal{L}_{simple} = \mathbb{E}_{t \sim [1,T]} \mathbb{E}_{x_0 \sim p(x_0)} \mathbb{E}_{z_t \sim \mathcal{N}(0,\mathbf{I})} \| z_t - z_\theta(x_t,t) \|^2$$

Diffusion Models (DMs) leverage the **concepts of the diffusion process** from stochastic calculus and consists of two main steps:

- **Reverse Diffusion Process (Denoising Process)** has same iterative procedure, but backwards: the noise is sequentially removed, and hence, the original image is recreated.

Generate new samples from $p(x_0)$ starting from a random noise $x_T \sim \mathcal{N}(0, \mathbf{I})$ and following reverse steps: $p(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu(x_t, t), \Sigma(x_t, t))$

A **new simplified framework**, fixes the variance and rewrite the mean as a function of noise:

$$\mu_{\theta} = \frac{1}{\sqrt{\alpha_t}} \cdot \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \hat{\beta}_t}} \cdot z_{\theta}(x_t, t) \right)$$

$$\mathcal{L}_{simple} = \mathbb{E}_{t \sim [1,T]} \mathbb{E}_{x_0 \sim p(x_0)} \mathbb{E}_{z_t \sim \mathcal{N}(0,\mathbf{I})} \| z_t - z_\theta(x_t,t) \|^2$$

Diffusion Models (DMs) leverage the **concepts of the diffusion process** from stochastic calculus and consists of two main steps:

- **Reverse Diffusion Process (Denoising Process)** has same iterative procedure, but backwards: the noise is sequentially removed, and hence, the original image is recreated.

Generate new samples from $p(x_0)$ starting from a random noise $x_T \sim \mathcal{N}(0, \mathbf{I})$ and following reverse steps: $p(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu(x_t, t), \Sigma(x_t, t))$

A **new simplified framework**, fixes the variance and rewrite the mean as a function of noise:

$$\mu_{\theta} = \frac{1}{\sqrt{\alpha_t}} \cdot \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \hat{\beta}_t}} \cdot z_{\theta}(x_t, t) \right)$$

$$\mathcal{L}_{simple} = \mathbb{E}_{t \sim [1,T]} \mathbb{E}_{x_0 \sim p(x_0)} \mathbb{E}_{z_t \sim \mathcal{N}(0,\mathbf{I})} \| z_t - z_\theta(x_t,t) \|^2$$

Diffusion Models (DMs) leverage the **concepts of the diffusion process** from stochastic calculus and consists of two main steps:

- **Reverse Diffusion Process (Denoising Process)** has same iterative procedure, but backwards: the noise is sequentially removed, and hence, the original image is recreated.

Generate new samples from $p(x_0)$ starting from a random noise $x_T \sim \mathcal{N}(0, \mathbf{I})$ and following reverse steps: $p(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu(x_t, t), \Sigma(x_t, t))$

A **new simplified framework**, fixes the variance and rewrite the mean as a function of noise:

$$\mu_{\theta} = \frac{1}{\sqrt{\alpha_t}} \cdot \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \hat{\beta}_t}} \cdot z_{\theta}(x_t, t) \right)$$

Popularity of DMs start from HERE!!

$$\mathcal{L}_{simple} = \mathbb{E}_{t \sim [1,T]} \mathbb{E}_{x_0 \sim p(x_0)} \mathbb{E}_{z_t \sim \mathcal{N}(0,\mathbf{I})} \|z_t - z_\theta(x_t,t)\|^2$$

Major Advances in DMs

Latent Diffusion Model (LDM), and Stable Diffusion Model (SDM)

trains the denoiser network (reverse diffusion) in the latent space instead of image space uses cross-attention mechanism for conditioning

Major Advances in DMs

Latent Diffusion Model (LDM), and Stable Diffusion Model (SDM)

trains the denoiser network (reverse diffusion) in the latent space instead of image space uses cross-attention mechanism for conditioning

Major Advances in DMs

Latent Diffusion Model (LDM), and Stable Diffusion Model (SDM)

trains the denoiser network (reverse diffusion) in the latent space instead of image space uses cross-attention mechanism for conditioning

Outline

I. Background of Generative Models

II. Major Challenges of Training Generative Models with Limited Data

III. Approaches for Image Generation with Limited Data

Major Challenges

Challenges for Training Generative Models under Data Constraint

- Overfitting
- Frequency Bias

Overfitting to Training Data

Overfitting. a common issue in machine learning when powerful models start to memorize the training data instead of learning the generalizable semantics

Mode Collapse. Under data constraints generative models are more prone to mode collapse

Example of mode e collapse on MNIST handwritten digits

Replicate Training Data. Under extreme cases, the generator just learns to replicate the training data

Generated images are extremely similar t training data

Overfitting to Training Data

Overfitting. a common issue in machine learning when powerful models start to memorize the training data instead of learning the generalizable semantics

Mode Collapse. Under data constraints generative models are more prone to mode collapse

Example of mode e collapse on MNIST handwritten digits

Replicate Training Data. Under extreme cases, the generator just learns to replicate the training data

G

Generated images are extremely similar t training data

Overfitting to Training Data

Overfitting. a common issue in machine learning when powerful models start to memorize the training data instead of learning the generalizable semantics

Mode Collapse. Under data constraints generative models are more prone to mode collapse

Replicate Training Data. Under extreme cases, the generator just learns to replicate the training data

Example of mode e collapse on MNIST handwritten digits

Frequency Bias: Neural networks learn lower frequencies first

On the Spectral Bias of Neural Networks

Nasim Rahaman^{*12} Aristide Baratin^{*1} Devansh Arpit¹ Felix Draxler² Min Lin¹ Fred A. Hamprecht² Yoshua Bengio¹ Aaron Courville¹

Figure 2. The learnt function (green) overlayed on the target function (blue) as the training progresses. The target function is a superposition of sinusoids of frequencies $\kappa = (5, 10, ..., 45, 50)$, equal amplitudes and randomly sampled phases.

Frequency Bias: generative models **prioritize fitting low-frequency** components while disregarding the high-frequency components

Spatial Frequency Bias in Convolutional Generative Adversarial Networks

Mahyar Khayatkhoei, Ahmed Elgammal Department of Computer Science, Rutgers University New Brunswick, New Jersey {m.khavatkhoei, elgammal}@cs.rutgers.edu

Figure 1: Average power spectrum of a large-scale GAN trained on a fractal-based dataset clearly reveals how the low frequencies (closer to center) are matched much more accurately than the high frequencies (closer to corners). (Left) Average power spectrum of randomly rotated Koch snowflakes of level 5 and size 1024×1024 . (Right) Average power spectrum of StyleGAN2 trained on the latter. A representative patch from the perimeter of true and generated fractals are also displayed.

Frequency Bias: generative models **prioritize fitting low-frequency** components while disregarding the high-frequency components

This bias **worsens** when data for training is limited.

Exclusion of these high-frequency components which encode intricate image details significantly impacts the quality of generated samples

Training data

Generated images by FastGAN showing loss of high-frequency details.

Outline

- I. Background of Generative Models
- II. Major Challenges of Training Generative Models with Limited Data
- **III.** Approaches for Image Generation with Limited Data

Approaches

Approaches for Image Generation with Limited Data (Training Generative Models with Limited Data):

- 1. Transfer Learning
- 2. Data Augmentation
- 3. Network Architecture

Approaches

Approaches for Image Generation with Limited Data (Training Generative Models with Limited Data):

- 1. Transfer Learning
- 2. Data Augmentation
- 3. Network Architecture

Approaches: Transfer Learning

Transfer Learning in Generative Modeling:

Transfer the knowledge of a pre-trained generator (on a large and diverse dataset) to a target domain with limited data

- \blacksquare Initialize the generator \mathbf{G}_{T} with weights of pre-trained generator \mathbf{G}_{S}
- ➡ Fine-tune **G**_T using limited data from target domain
- \blacksquare General knowledge (domain-agnostic) from $\mathbf{G}_{\mathbf{S}}$ is useful for target domain, and the

domain-specific knowledge needs to be acquired using limited data from target domain

Approaches: Transfer Learning

Transfer Learning in Generative Modeling:

Transfer the knowledge of a pre-trained generator (on a large and diverse dataset) to a target domain with limited data

- \blacksquare Initialize the generator $\mathbf{G}_{\mathbf{T}}$ with weights of pre-trained generator $\mathbf{G}_{\mathbf{S}}$
- \blacksquare Fine-tune $\mathbf{G}_{\mathbf{T}}$ using limited data from target domain
- \blacksquare General knowledge (domain-agnostic) from $\mathbf{G}_{\mathbf{s}}$ is useful for target domain, and the domain-specific knowledge needs to be acquired using limited data from target domain

Transfer Learning in Generative Modeling:

Transfer the knowledge of a pre-trained generator (on a large and diverse dataset) to a target domain with limited data

- \blacksquare Initialize the generator $\mathbf{G}_{\mathbf{T}}$ with weights of pre-trained generator $\mathbf{G}_{\mathbf{S}}$
- \blacksquare Fine-tune $\mathbf{G}_{\mathbf{T}}$ using limited data from target domain
- \blacksquare General knowledge (domain-agnostic) from $\mathbf{G}_{\mathbf{s}}$ is useful for target domain, and the domain-specific knowledge needs to be acquired using limited data from target domain

Transfer Learning in Generative Modeling:

Transfer the knowledge of a pre-trained generator (on a large and diverse dataset) to a target domain with limited data

- \blacksquare Initialize the generator $\mathbf{G}_{\mathbf{T}}$ with weights of pre-trained generator $\mathbf{G}_{\mathbf{S}}$
- \blacksquare Fine-tune $\mathbf{G}_{\mathbf{T}}$ using limited data from target domain
- \implies General knowledge (domain-agnostic) from $\mathbf{G}_{\mathbf{s}}$ is useful for target domain, and the domain-specific knowledge needs to be acquired using limited data from target domain

Transfer Learning in Generative Modeling:

Transfer the knowledge of a pre-trained generator (on a large and diverse dataset) to a target domain with limited data

➡ Fine-tune **G**_T usir

General knowledgedomain-specific knowledgedoma

Similar approach can be applied to Medical Image Generation conditioned on having a powerful source model trained on medical data!

ain, and the target domain

Pre-trained generator on **"LSUN-Church**" domain Knowledge Transfer

Adapted generator to **"Van Gogh's House**" using limited data

Major Limitation

Because of data constraints on target domain, the **general knowledge can be degraded** during fine-tuning generator on target data (acquiring the domain-specific knowledge)

Example. Adapting a generator trained on human faces (FFHQ) to painting of human faces (e.g., Fernand Léger):

- **Shared (general) knowledge:** face structure, diversity in pose, hairstyle, ...
- **Domain-specific knowledge:** the style of the paining with Fernand Léger

Result. Conventional transfer learning results in missing general knowledge: losing diversity and only containing the target style

Training examples Generated images by adapting a pre-trained StyleGAN on FFHQ to Fernand Léger Painting

Major Limitation

Because of data constraints on target domain, the **general knowledge can be degraded** during fine-tuning generator on target data (acquiring the domain-specific knowledge)

Example. Adapting a generator trained on human faces (FFHQ) to painting of human faces (e.g., Fernand Léger):

- **Shared (general) knowledge:** face structure, diversity in pose, hairstyle, ...
- **Domain-specific knowledge:** the style of the paining with Fernand Léger

Result. Conventional transfer learning results in missing general knowledge: losing diversity and only containing the target style

Training examples Generated images by adapting a pre-trained StyleGAN on FFHQ to Fernand Léger Painting

Major Limitation

Because of data constraints on target domain, the **general knowledge can be degraded** during fine-tuning generator on target data (acquiring the domain-specific knowledge)

Example. Adapting a generator trained on human faces (FFHQ) to painting of human faces (e.g., Fernand Léger):

- **Shared (general) knowledge:** face structure, diversity in pose, hairstyle, ...
- **Domain-specific knowledge:** the style of the paining with Fernand Léger

Result. Conventional transfer learning results in missing general knowledge: losing diversity and only containing the target style

Training examples Generated images by adapting a pre-trained StyleGAN on FFHQ to Fernand Léger Painting

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to preserve the knowledge in the pre-trained generator

Cross-Domain Correspondence (CDC) Key Observation. Overfitting in transfer learning, leads to the loss of correspondence between images generated by source and target domain

Objective. Add a regularizer to **preserve the correspondence between generated images before and after adapting** the generator to target domain

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to preserve the knowledge in the pre-trained generator

Cross-Domain Correspondence (CDC)

Key Observation. Overfitting in transfer learning, leads to the **loss of correspondence** between images generated by source and target domain

 Z_0 Z_1 Z_2 Z_3 Source G_s Image: Comparison of the second second

Objective. Add a regularizer to **preserve the correspondence between generated images before and after adapting** the generator to target domain

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to preserve the knowledge in the pre-trained generator

Cross-Domain Correspondence (CDC)

Key Observation. Overfitting in transfer learning, leads to the **loss of correspondence** between images generated by source and target domain

 Z_0 Z_1 Z_2 Z_3 Source G_s Image: Source in the second seco

Objective. Add a regularizer to **preserve the correspondence between generated images before and after adapting** the generator to target domain

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to preserve the knowledge in the pre-trained generator

Cross-Domain Correspondence (CDC)

Key Observation. Overfitting in transfer learning, leads to the **loss of correspondence** between images generated by source and target domain

 Z_0 Z_1 Z_2 Z_3 Source G_s Image: Source G_s in the second second

Objective. Add a regularizer to **preserve the correspondence between generated images before and after adapting** the generator to target domain

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to preserve the knowledge in the pre-trained generator

Approach:

- Sample N+1 noise vectors
- Compute **pairwise similarity scores s**, between images generated by these noise vectors
- Construct **N-way probability distribution** by applying softmax on similarity scores

$$\begin{split} y_i^{s,l} &= \text{Softmax}\big(\{ \sin(G_s^l(z_i),G_s^l(z_j))\}_{\forall i \neq j} \big) \\ y_i^{s \to t,l} &= \text{Softmax}\big(\{ \sin(G_{s \to t}^l(z_i),G_{s \to t}^l(z_j))\}_{\forall i \neq j} \big) \end{split}$$

• Enforce adapted model to have similar distributions to the source

 $\mathcal{L}_{\text{dist}}(G_{s \to t}, G_s) = \mathbb{E}_{\{z_i \sim p_z(z)\}} \sum D_{KL}(y_i^{s \to t, l} || y_i^{s, l})$

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to preserve the knowledge in the pre-trained generator

Softmax + KL-Divergence

Approach:

- Sample N+1 noise vectors
- Compute **pairwise similarity scores s**, between images generated by these noise vectors
- Construct **N-way probability distribution** by applying softmax on similarity scores

$$\begin{split} y_i^{s,l} &= \text{Softmax}\big(\{ \sin(G_s^l(z_i),G_s^l(z_j))\}_{\forall i \neq j} \big) \\ y_i^{s \to t,l} &= \text{Softmax}\big(\{ \sin(G_{s \to t}^l(z_i),G_{s \to t}^l(z_j))\}_{\forall i \neq j} \big) \end{split}$$

• Enforce adapted model to have similar distributions to the source

 $\mathcal{L}_{\text{dist}}(G_{s \to t}, G_s) = \mathbb{E}_{\{z_i \sim p_z(z)\}} \sum D_{KL}(y_i^{s \to t, l} || y_i^{s, l})$

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to preserve the knowledge in the pre-trained generator

Approach:

- Sample N+1 noise vectors
- Compute **pairwise similarity scores s**, between images generated by these noise vectors
- Construct **N-way probability distribution** by applying softmax on similarity scores

 $y_i^{s,l} = \operatorname{Softmax} \left(\{ \operatorname{sim}(G_s^l(z_i), G_s^l(z_j)) \}_{\forall i \neq j} \right) \\ y_i^{s \to t,l} = \operatorname{Softmax} \left(\{ \operatorname{sim}(G_{s \to t}^l(z_i), G_{s \to t}^l(z_j)) \}_{\forall i \neq j} \right)$

• Enforce adapted model to have similar distributions to the source

 $\mathcal{L}_{\text{dist}}(G_{s \to t}, G_s) = \mathbb{E}_{\{z_i \sim p_z(z)\}} \sum D_{KL}(y_i^{s \to t, l} || y_i^{s, l})$

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to preserve the knowledge in the pre-trained generator

Approach:

- Sample N+1 noise vectors
- Compute **pairwise similarity scores s**, between images generated by these noise vectors
- Construct **N-way probability distribution** by applying softmax on similarity scores

 $y_i^{s,l} = \operatorname{Softmax} \left(\{ \operatorname{sim}(G_s^l(z_i), G_s^l(z_j)) \}_{\forall i \neq j} \right) \\ y_i^{s \to t,l} = \operatorname{Softmax} \left(\{ \operatorname{sim}(G_{s \to t}^l(z_i), G_{s \to t}^l(z_j)) \}_{\forall i \neq j} \right)$

• Enforce adapted model to have similar distributions to the source

$$\mathcal{E}_{\text{dist}}(G_{s \to t}, G_s) = \mathbb{E}_{\{z_i \sim p_z(z)\}} \sum_{l,i} D_{KL}(y_i^{s \to t,l} || y_i^{s,l})$$

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to preserve the knowledge in the pre-trained generator

Approaches

Approaches for Image Generation with Limited Data (Training Generative Models with Limited Data):

- 1. Transfer Learning
- 2. Data Augmentation
- 3. Network Architecture

Data Augmentation in Generative Modeling

- Data augmentation aims to **increase the quantity and diversity of the training data** by applying some transformations in real data, e.g., adding noise, rotating images, ...
- Increased quantity can **prevent overfitting** of the generative model

General geometric transformations

Isotropic scaling

Anisotropic scaling

Fractional ranslation

Major Limitation of Classical Data Augmentation in Generative Learning

Generator **learns the augmented data distribution** instead of the real distribution and generate image with same transformations

Image-Level Augmentation: Apply data transformation on image space.

Adaptive Data Augmentation (ADA): apply augmentation to the both real and fake images with an adjustable probability based on the training dynamics

Approach. ADA includes following components:

- Augmentation is applied to **both real and fake images** (in training both D and G)
- The augmentation is applied **with a probability p<1** to enable the occurrence of the real distribution
- The **strength of the augmentation (p)** is adjusted based on the **degree of overfitting**
- Two heuristics are proposed to monitor the overfitting

$$r_v = \frac{\mathbb{E}[D_{\text{train}}] - \mathbb{E}[D_{\text{validation}}]}{\mathbb{E}[D_{\text{train}}] - \mathbb{E}[D_{\text{generated}}]} \qquad r_t = \mathbb{E}[\text{sign}(D_{\text{train}})]$$

r=0 means no overfitting, and r=1 indicates complete overfitting

Image-Level Augmentation: Apply data transformation on image space.

Adaptive Data Augmentation (ADA): apply augmentation to the both real and fake images with an adjustable probability based on the training dynamics

Approach. ADA includes following components:

- Augmentation is applied to **both real and fake images** (in training both D and G)
- The augmentation is applied **with a probability p<1** to enable the occurrence of the real distribution
- The **strength of the augmentation (p)** is adjusted based on the **degree of overfitting**
- Two heuristics are proposed to monitor the overfitting

$$r_v = \frac{\mathbb{E}[D_{\text{train}}] - \mathbb{E}[D_{\text{validation}}]}{\mathbb{E}[D_{\text{train}}] - \mathbb{E}[D_{\text{generated}}]} \qquad r_t = \mathbb{E}[\text{sign}(D_{\text{train}})]$$

r=0 means no overfitting, and r=1 indicates complete overfitting

Image-Level Augmentation: Apply data transformation on image space.

Adaptive Data Augmentation (ADA): apply augmentation to the both real and fake images with an adjustable probability based on the training dynamics

Approach. ADA includes following components:

- Augmentation is applied to **both real and fake images** (in training both D and G)
- The augmentation is applied **with a probability p<1** to enable the occurrence of the real distribution
- The **strength of the augmentation (p)** is adjusted based on the **degree of overfitting**
- Two heuristics are proposed to monitor the overfitting

$$r_v = \frac{\mathbb{E}[D_{\text{train}}] - \mathbb{E}[D_{\text{validation}}]}{\mathbb{E}[D_{\text{train}}] - \mathbb{E}[D_{\text{generated}}]} \qquad r_t = \mathbb{E}[\text{sign}(D_{\text{train}})]$$

r=0 means no overfitting, and r=1 indicates complete overfitting

Image-Level Augmentation: Apply data transformation on image space.

Adaptive Data Augmentation (ADA): apply augmentation to the both real and fake images with an adjustable probability based on the training dynamics

Approach. ADA includes following components:

- Augmentation is applied to **both real and fake images** (in training both D and G)
- The augmentation is applied **with a probability p<1** to enable the occurrence of the real distribution
- The **strength of the augmentation (p)** is adjusted based on the **degree of overfitting**
- Two heuristics are proposed to monitor the overfitting

$$r_v = \frac{\mathbb{E}[D_{\text{train}}] - \mathbb{E}[D_{\text{validation}}]}{\mathbb{E}[D_{\text{train}}] - \mathbb{E}[D_{\text{generated}}]} \qquad r_t = \mathbb{E}[\text{sign}(D_{\text{train}})]$$

r=0 means no overfitting, and r=1 indicates complete overfitting

Image-Level Augmentation: Apply data transformation on image space.

Adaptive Data Augmentation (ADA): apply augmentation to the both real and fake images with an adjustable probability based on the training dynamics

Approach. ADA includes following components:

- Augmentation is applied to **both real and fake images** (in training both D and G)
- The augmentation is applied **with a probability p<1** to enable the occurrence of the real distribution
- The **strength of the augmentation (p)** is adjusted based on the **degree of overfitting**
- Two heuristics are proposed to monitor the overfitting

$$r_v = \frac{\mathbb{E}[D_{\text{train}}] - \mathbb{E}[D_{\text{validation}}]}{\mathbb{E}[D_{\text{train}}] - \mathbb{E}[D_{\text{generated}}]} \qquad r_t = \mathbb{E}[\text{sign}(D_{\text{train}})]$$

r=0 means no overfitting, and r=1 indicates complete overfitting

Image-Level Augmentation: Apply data transformation on image space.

Adaptive Data Augmentation (ADA): apply augmentation to the both real and fake images with an adjustable probability based on the training dynamics

Results MetFaces dataset (1336 images) of art paintings

FID 15.34 - KID 0.81×103 - Recall 0.261

FID 19.47 - KID 3.16×103 - Recall 0.350

Image-Level Augmentation: Apply data transformation on image space.

Adaptive Data Augmentation (ADA): apply augmentation to the both real and fake images with an adjustable probability based on the training dynamics

Results

BreCaHAD dataset (1944 images) for breast cancer annotation

FID 15.71 - KID 2.88×103 - Recall 0.340

Image-Level Augmentation: Apply data transformation on image space.

Adaptive Data Augmentation (ADA)

Evaluating the Performance of StyleGAN2-ADA on Medical Images

McKell Woodland^{1,2}, John Wood¹, Brian M. Anderson^{1,4}, Suprateek Kundu¹ Ethan Lin¹, Eugene Koay¹, Bruno Odisio¹, Caroline Chung¹, Hyunseon Christine Kang¹, Aradhana M. Venkatesan¹, Sireesha Yedururi¹, Brian De¹, Yuan-Mao Lin¹, Ankit B. Patel^{2,3}, and Kristy K. Brock¹

 ¹ The University of Texas MD Anderson Cancer Center, Houston TX 77030, USA MEWoodland@mdanderson.org
² Rice University, Houston TX 77005, USA
³ Baylor College of Medicine, Houston TX 77030, USA
⁴ University of California San Diego, La Jolla CA 92093, USA

Image-Level Augmentation: Apply data transformation on image space.

Adaptive Data Augmentation (ADA)

Baseline StyleGAN2Image: StyleGAN2<

Start from a pre-trained StyleGAN2-ADA on FFHQ and fine-tune on the SLIVER07 dataset

Approaches

Approaches for Image Generation with Limited Data (Training Generative Models with Limited Data):

- 1. Transfer Learning
- 2. Data Augmentation
- 3. Network Architecture

Network Architecture

Design specific architectures for the generators to improve their training performance under data constraints. Like designing shallow/sparse architectures to **prevent over-parameterization**.

Primary Challenge/Limitation

- When aiming to design a new architecture, the process of discovering optimal hyperparameters can be laborious
- Designing new architecture prevents leveraging the powerful pre-trained generators

Network Architecture

Design specific architectures for the generators to improve their training performance under data constraints. Like designing shallow/sparse architectures to **prevent over-parameterization**.

Primary Challenge/Limitation

- When aiming to design a new architecture, the process of discovering optimal hyperparameters can be laborious
- Designing new architecture prevents leveraging the powerful pre-trained generators

Feature Enhancement: Design additional modules to enhance/retain the features of the generator

FastGAN has **three major design** choices: i) Using a **compact size network** for both G and D in GAN ii) introducing **Skip-layer excitation** for G for better gradient flow iii) adding **self-supervised** task for D

Results of training FastGAN **from scratch** on **1024² resolution** using **single RTX 2080-Ti GPU** with only 1000 images. Left: **20 hours** on Nature photos; Right: **10 hours** on FFHQ.

Feature Enhancement: Design additional modules to enhance/retain the features of the generator

FastGAN has **three major design** choices: i) Using a **compact size network** for both G and D in GAN ii) introducing **Skip-layer excitation** for G for better gradient flow iii) adding **self-supervised** task for D

Results of training FastGAN **from scratch** on **1024² resolution** using **single RTX 2080-Ti GPU** with only 1000 images. Left: **20 hours** on Nature photos; Right: **10 hours** on FFHQ.

Feature Enhancement: Design additional modules to enhance/retain the features of the generator

FastGAN has **three major design** choices: i) Using a **compact size network** for both G and D in GAN ii) introducing **Skip-layer excitation** for G for better gradient flow iii) adding **self-supervised** task for D

Results of training FastGAN **from scratch** on **1024² resolution** using **single RTX 2080-Ti GPU** with only 1000 images. Left: **20 hours** on Nature photos; Right: **10 hours** on FFHQ.

Feature Enhancement: Design additional modules to enhance/retain the features of the generator

FastGAN Design of Generator (G):

- Use a **single Conv-layer** for each resolution
- Use **skip-layer excitation** including skip connection and connection between different resolutions for **better gradient flow during training G**

Feature Enhancement: Design additional modules to enhance/retain the features of the generator

FastGAN Design of Discriminator (D):

- Use a **compact design** for D
- Add reconstruction loss in two different resolution (additional task as auto-encoder) to improve learning of D using **additional supervisory signal**

Feature Enhancement: Design additional modules to enhance/retain the features of the generator

Comprehensive Review: Network Architecture

Feature Enhancement: Design additional modules to enhance/retain the features of the generator

Output type	Modality	Model type	Output size	Base dataset	Output examples	model_id
				•		
Polyp with Mask	endoscopy	fastgan	256x256	<u>HyperKvasir</u>	•	00010_FASTGAN_POLYP_PATCHES_W_MASKS

Liu, Bingchen, et al. "Towards faster and stabilized gan training for high-fidelity few-shot image synthesis." ICLR'20.

