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I. Background of Generative Models
I1. Major Challenges of Training Generative Models with Limited Data

II1. Approaches for Image Generation with Limited Data
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I. Background of Generative Models
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Background of Generative Modeling

Definition of Domain and Generative Modeling
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Background: Definition of Domain

Domain. a domain consists of two components:

D= {X  Pjarat a sample from a domain
/ \ X ~Pygta € X
a sample space a probability

distribution
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Background: Definition of Domain

Domain. a domain consists of two components:

D= {X  Pjarat a sample from a domain
/ \ X ~Pygta € X
a sample space a probability

distribution

Example. Flickr-Faces-HQ (FFHQ) as the domain of image of human faces

10
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Background: Definition of Domain

Domain. a domain consists of two components:

D= {VX  Pjarat a sample from a domain
/ \ X = Pdata e X
a sample space a probability

distribution

Example. SLIVERO7 as the domain of 3D CT scans of livers

11
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Background: Generative Modeling

Generative Models. ‘
Given a set of training samples from a domain D = {X, P;4,}, generative modeling aims to learn
to capture the distribution of these samples, i.e., Pygq4-

12
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Background: Generative Modeling

Generative Models. ‘
Given a set of training samples from a domain D = {X, P;4,}, generative modeling aims to learn
to capture the distribution of these samples, i.e., Pygq4-

Result is a generative model G, encoding a probability distribution P,,,,ge; -
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Background: Generative Modeling

Generative Models. ‘
Given a set of training samples from a domain D = {X, P;4,}, generative modeling aims to learn
to capture the distribution of these samples, i.e., Pygq4-

Result is a generative model G, encoding a probability distribution P,,,,ge; -

Learning objective is to have Pp,p4e; Similar to Py, Statistically.

14
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Background: Generative Modeling

Generative Models. ‘
Given a set of training samples from a domain D = {X, P;4,}, generative modeling aims to learn
to capture the distribution of these samples, i.e., Pygq4-

Result is a generative model G, encoding a probability distribution P,,,,ge; -
Learning objective is to have Py,p4e; Similar to Pyg, statistically.

After training, G can generate samples following Podel.

A set of training
samples on human
face dataset (Pgqsq)

Generated /fake

I t
P —»| G .
lmage (Pmodel)

noise .

15




Milad Abdollahzadeh Medical Image Generation with Limited Data Feb 5, 2025

Background: Generative Modeling

Generative vs Discriminative Modeling

16
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Background: Generative Modeling

Generative vs Discriminative Modeling

Discriminative Models learn the boundary
in data space to be able to discriminate
samples from different classes (e.g., ResNet
classifier).

Discriminant Model

17
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Background: Generative Modeling

Generative vs Discriminative Modeling

Discriminative Models learn the boundary Generative Models learn the distribution of
in data space to be able to discriminate the data itself.

samples from different classes (e.g., ResNet Later, by sampling from learned distribution,
classifier). they can generate new samples.

Discriminant Model Generative Model “\

18
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Background of Generative Modeling

Unconditional vs Conditional Image Generation

19
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Background: Unconditional vs Conditional Image Generation

Image Generation: after learning generative model, typically:

- image generation starts with sampling a random noise z (also called latent code) as input.
- This input as passed into generative model G which transforms it to a new sample G(z)

20
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Background: Unconditional vs Conditional Image Generation

Image Generation: after learning generative model, typically:

- image generation starts with sampling a random noise z (also called latent code) as input.
- This input as passed into generative model G which transforms it to a new sample G(z)

/:.\ z—| G |— G(2

\\‘ ‘/ Latent Code Generated g
(random noise) Image

This is called unconditional image generation as there is no conditioning mechanism to
restrict image generation.

21
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Background: Unconditional vs Conditional Image Generation

Image Generation: after learning generative model, typically:

- image generation starts with sampling a random noise z (also called latent code) as input.
- This input as passed into generative model G which transforms it to a new sample G(z)

If an additional condition c (e.g., class label, ...) is used to steer sample generation towards c,
the sample generation is called conditional image generation: G(z,c)

22
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Background: Unconditional vs Conditional Image Generation

Image Generation: after learning generative model, typically:

- image generation starts with sampling a random noise z (also called latent code) as input.
- This input as passed into generative model G which transforms it to a new sample G(z)

If an additional condition c (e.g., class label, ...) is used to steer sample generation towards c,
the sample generation is called conditional image generation: G(z,c)

For example, conditioning on class label:

peacock cabinet

/‘.:.\ Latent Code
{ ®

| [ ] . ./
ee”

—_— G(Z,C)

z —| G
Generated
c

Image
Class Condition 23
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Background: Unconditional vs Conditional Image Generation

If an additional condition c (e.g., class label, ...) is used to steer sample generation towards c,
the sample generation is called conditional image generation: G(z,c)

24
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Background: Unconditional vs Conditional Image Generation

If an additional condition c (e.g., class label, ...) is used to steer sample generation towards c,
the sample generation is called conditional image generation: G(z,c)

conditioning on text prompt

/.;_’. Latent Code
o
e

b ] Generated
Cc = text prompt Image

An art installation floats in the air, the

G(z,c)

installation is a cute shark made of candy,
bright colors, light gray background,
studio, contemporary art, minimalism,

telephoto lens, large aperture photography

Generator: Midjourney

25
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Background: Unconditional vs Conditional Image Generation

If an additional condition c (e.g., class label, ...) is used to steer sample generation towards c,
the sample generation is called conditional image generation: G(z,c)

conditioning on text prompt

X Latent Code
....
( o | z——| G G(z,c)
[ ] k2] ®/
oo
- Generated
¢ = text prompt Image
Fundoscopy image of the Generator:
left retina with no [MediSyn] Text-Guided Diffusion Models
Diabetic retinopathy for Broad Medical 2D and 3D Image

Synthesis (Stanford Medicine)
26
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Background: Unconditional vs Conditional Image Generation

If an additional condition c (e.g., class label, ...) is used to steer sample generation towards c,
the sample generation is called conditional image generation: G(z,c)

conditioning on text prompt

/....\ Latent Code
f e z —| G G(z,c)
\ ' ‘ .II
\\3 [ 4
- ] Generated
c = text prompt Image
AP Frontal Chest X-ray Generator:
(CXR) of a male patient [MediSyn] Text-Guided Diffusion Models

for Broad Medical 2D and 3D Image

Synthesis (Stanford Medicine)
27
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Background: Unconditional vs Conditional Image Generation

If an additional condition c (e.g., class label, ...) is used to steer sample generation towards c,
the sample generation is called conditional image generation: G(z,c)

28
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Background: Unconditional vs Conditional Image Generation

If an additional condition c (e.g., class label, ...) is used to steer sample generation towards c,
the sample generation is called conditional image generation: G(z,c)

conditioning on layout

/._.\ Latent Code
oo, | z —| G

E —I Image

c = Layout
(including bounding box)

Generator: Stable Diffusion

29
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Background of Generative Modeling

Popular Image Generation Models

- Variational AutoEncoder (VAE)
- Generative Adversarial Networks (GAN)
- Diffusion Models (DM)

30
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Generative Models: Variational Auto-Encoder (VAE)

Auto-Encoder (AE) consist of two networks:

e Encoder (E) learn to map input image to a low-dimensional latent representation
e Decoder (D) aims to reconstruct the image from that latent representation

x —| E |——2z=E(x)——| D |—— x=D(2)
input image latent representation

reconstructed image

31
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Generative Models: Variational Auto-Encoder (VAE)

Auto-Encoder (AE) consist of two networks:

e Encoder (E) learn to map input image to a low-dimensional latent representation
e Decoder (D) aims to reconstruct the image from that latent representation

x —| E |——2z=E(x)——| D |—— x=D(2)
input image latent representation

reconstructed image

Learning objective:
Lrec = ||x = D(2)]]2

32
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Generative Models: Variational Auto-Encoder (VAE)

Auto-Encoder (AE) consist of two networks:

e Encoder (E) learn to map input image to a low-dimensional latent representation
e Decoder (D) aims to reconstruct the image from that latent representation

x —| E |——2z=E(x)——| D |—— x=D(2)
input image latent representation

reconstructed image

Learning objective:
Lrec = ||x = D(2)]]2

AEs focus on dimensionality reduction, and the irregularity of their latent space makes them
improper for sample generation.

33
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Generative Models: Variational Auto-Encoder (VAE)

Variational Auto-Encoder (VAE) aims to address this irregularity by enforcing E to return a normal
distribution over latent space.

x—| E |——2z=E(x)——| D |—— x=D(2)
input image latent representation

reconstructed image

VAE: adding a regularizer
on latent space distribution

34
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Generative Models: Variational Auto-Encoder (VAE)

Variational Auto-Encoder (VAE) aims to address this irregularity by enforcing E to return a normal
distribution over latent space.

x — | E —2z=E(x) ——| D |—— x=D(2)

input image latent representation reconstructed image

VAE: adding a regularizer
on latent space distribution

Learning objective:

L = ||x = D(2)|l2 + KL(N (1, 6*), N(0,]))

35
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Generative Models: Variational Auto-Encoder (VAE)

Variational Auto-Encoder (VAE) aims to address this irregularity by enforcing E to return a normal
distribution over latent space.

x — | E —2z=E(x) ——| D |—— x=D(2)

input image latent representation reconstructed image

Learning objective:

L = ||x = D(2)|l2 + KL(N (1, 6*), N(0,]))

Vector-Quantized VAE (VQ-VAE) adds tokenization which quatizes the embedding into visual

tokens for mitigating the challenge of direct maximization of likelihood in image space.
36
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Generative Models: Generative Adversarial Networks (GANSs)

GANs consist of two networks:

37



Milad Abdollahzadeh Medical Image Generation with Limited Data Feb 5, 2025

Generative Models: Generative Adversarial Networks (GANSs)

GANs consist of two networks:

- Generator (G) learn to generate images
from input noise (latent code)

Zﬁ

Input
noise

Fake image

G

38
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Generative Models: Generative Adversarial Networks (GANSs)

real images

GANs consist of two networks:

- Generator (G) learn to generate images |
from input noise (latent code) ' dli 4

. . s . . . Real or Fake
- Discriminator (D) learn to distinguish

between real and fake images

Training loss

Fake image

39
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Generative Models: Generative Adversarial Networks (GANSs)

real images

GANs consist of two networks:

- Generator (G) learn to generate images
from input noise (latent code)

. . s . . . Real or Fake
- Discriminator (D) learn to distinguish

between real and fake images

Training loss

Zﬁ

Input
noise

These two network compete in a Fake image
min-max game: G

min max, v D,6) = E 5 [log(D(x)] + E - [log(1 — D(G(2))]

d

40
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Generative Models: Generative Adversarial Networks (GANSs)

real images

GANs consist of two networks:

- Generator (G) learn to generate images “ |
from input noise (latent code) ddi 4

. . s . . . Real or Fake
- Discriminator (D) learn to distinguish

between real and fake images

Training loss

These two network compete in a Fake image
min-max game:

min max, v D,6) = IEx~p [log(D(x)] + IEz~p [log(1 — D(G(2))]

d

Finally D is discarded and G is used for image generation. »
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Generative Models: Diffusion Models (DMs)

Diffusion Models (DMs) leverage the concepts of the diffusion process from stochastic calculus and
consists of two main steps:

42



Milad Abdollahzadeh Medical Image Generation with Limited Data Feb 5, 2025

Generative Models: Diffusion Models (DMs)

Diffusion Models (DMs) leverage the concepts of the diffusion process from stochastic calculus and

consists of two main steps:
- Forward Diffusion Process consists of multiple steps in which low-level noise is added to each

input image, where the scale of the noise varies at each step. The training data is progressively
destroyed until it results in pure Gaussian noise.
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Generative Models: Diffusion Models (DMs)

Diffusion Models (DMs) leverage the concepts of the diffusion process from stochastic calculus and
consists of two main steps:

- Forward Diffusion Process consists of multiple steps in which low-level noise is added to each
input image, where the scale of the noise varies at each step. The training data is progressively
destroyed until it results in pure Gaussian noise.

- Reverse Diffusion Process (Denoising Process) has same iterative procedure, but backwards: the
noise is sequentially removed, and hence, the original image is recreated.
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Generative Models: Diffusion Models (DMs)

Diffusion Models (DMs) leverage the concepts of the diffusion process from stochastic calculus and

consists of two main steps:
- Forward Diffusion Process consists of multiple steps in which low-level noise is added to each

input image, where the scale of the noise varies at each step. The training data is progressively

destroyed until it results in pure Gaussian noise.
- Reverse Diffusion Process (Denoising Process) has same iterative procedure, but backwards: the

noise is sequentially removed, and hence, the original image is recreated.

Forward Diffusion Process

Data
Noise

Xt+1

. . o o 45
Reverse Diffusion Process (Denoising Process)
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Generative Models: Diffusion Models (DMs)

Diffusion Models (DMs) leverage the concepts of the diffusion process from stochastic calculus and

consists of two main steps:

- Forward Diffusion Process consists of multiple steps in which low-level noise is added to each
input image, where the scale of the noise varies at each step. The training data is progressively
destroyed until it results in pure Gaussian noise.
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Generative Models: Diffusion Models (DMs)

Diffusion Models (DMs) leverage the concepts of the diffusion process from stochastic calculus and
consists of two main steps:

- Forward Diffusion Process consists of multiple steps in which low-level noise is added to each
input image, where the scale of the noise varies at each step. The training data is progressively
destroyed until it results in pure Gaussian noise.

Given an uncorrupted training sample xo ~ p(xo) :
- the noisy versions of this sample 1, Z3 ..., X are obtained with following markovian process: :

p($t|.’13t_1) :N(xt;\/ 1—0B¢- i1, Bt'I),VtE {1, AN ,T}

47
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Generative Models: Diffusion Models (DMs)

Diffusion Models (DMs) leverage the concepts of the diffusion process from stochastic calculus and

consists of two main steps:

- Forward Diffusion Process consists of multiple steps in which low-level noise is added to each
input image, where the scale of the noise varies at each step. The training data is progressively
destroyed until it results in pure Gaussian noise.

Given an uncorrupted training sample xo ~ p(xo) :
- the noisy versions of this sample 1, Z3 ..., X are obtained with following markovian process: :

p($t|$t—1) :N(ﬂﬁt;v 1—-B-xi—1, ﬁt'I>,Vt€ {17 e aT}
Important property of this formulation is the possibility to directly sample at time step t:

p(zt|zo) =N<9Ut; \/,BTt'xoa (1 _Bt) 'I) ) Bt = Hle Q; and ar =1 — 5

This is usually done by reparameterization trick: z, = \/8; - zo + v/ (1 — B¢) - 2 "
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Generative Models: Diffusion Models (DMs)

Diffusion Models (DMs) leverage the concepts of the diffusion process from stochastic calculus and

consists of two main steps:
- Reverse Diffusion Process (Denoising Process) has same iterative procedure, but backwards: the

noise is sequentially removed, and hence, the original image is recreated.
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Generative Models: Diffusion Models (DMs)

Diffusion Models (DMs) leverage the concepts of the diffusion process from stochastic calculus and

consists of two main steps:
- Reverse Diffusion Process (Denoising Process) has same iterative procedure, but backwards: the

noise is sequentially removed, and hence, the original image is recreated.

Generate new samples from p(Zo) starting from a random noise zp~ A/(0,I) and following

reverse steps: p(33t—1|33t) = N(a:t_l;u(:vt,t),z(wt,t))
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Generative Models: Diffusion Models (DMs)

Diffusion Models (DMs) leverage the concepts of the diffusion process from stochastic calculus and

consists of two main steps:
- Reverse Diffusion Process (Denoising Process) has same iterative procedure, but backwards: the

noise is sequentially removed, and hence, the original image is recreated.

Generate new samples from p(xg) starting from a random noise xp~ N (0, I) and following
reverse SthS: p(wt_]_ |$t) — N(.’Et_l; ’UJ(fL't, t), Z(wt, t))

We train a neural network (usually UNet) to approximate these steps
| po(xi-1|2) = N(2t-1; po(we, 1), Zo(24, 1))
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Generative Models: Diffusion Models (DMs)

Diffusion Models (DMs) leverage the concepts of the diffusion process from stochastic calculus and

consists of two main steps:
- Reverse Diffusion Process (Denoising Process) has same iterative procedure, but backwards: the

noise is sequentially removed, and hence, the original image is recreated.

Generate new samples from p(xg) starting from a random noise xp~ N (0, I) and following
reverse SthS: p(wt_]_ |$t) — N(.’Et_l; ’LL(fL't, t), E(wt, t))

We train a neural network (usually UNet) to approximate these steps
| po(xi-1|2) = N(2t-1; po(we, 1), Zo(24, 1))

This network predicts the mean and variance of the noise at time step t based on the input
and is trained to maximize the posterior distribution (a variational lower bound of it) of the
real samples: 5
Lo = = log po(wolar) + KL (plor|zo)l|m(w1)) + D KL(p(zeorlze, zo)llpo(weslze))
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Generative Models: Diffusion Models (DMs)

Diffusion Models (DMs) leverage the concepts of the diffusion process from stochastic calculus and

consists of two main steps:
- Reverse Diffusion Process (Denoising Process) has same iterative procedure, but backwards: the

noise is sequentially removed, and hence, the original image is recreated.

Generate new samples from p(Zo) starting from a random noise zp~ A/(0,I) and following
reverse steps: D@ 1lze) = N(@os; (1), Sz t)
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Generative Models: Diffusion Models (DMs)

Diffusion Models (DMs) leverage the concepts of the diffusion process from stochastic calculus and

consists of two main steps:
- Reverse Diffusion Process (Denoising Process) has same iterative procedure, but backwards: the

noise is sequentially removed, and hence, the original image is recreated.

Generate new samples from p(Zo) starting from a random noise zp~ A/(0,I) and following
reverse steps: D@ 1lze) = N(@os; (1), Sz t)

- A new simplified framework, fixes the variance and rewrite the mean as a function of noise:

- (zct _ 1 —atA -zg(:ct,t)>
1 — B

al-

po =

54
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Generative Models: Diffusion Models (DMs)

Diffusion Models (DMs) leverage the concepts of the diffusion process from stochastic calculus and

consists of two main steps:
- Reverse Diffusion Process (Denoising Process) has same iterative procedure, but backwards: the

noise is sequentially removed, and hence, the original image is recreated.

Generate new samples from p(Zo) starting from a random noise zp~ A/(0,I) and following
reverse steps: p(xi—1lze) = N(ze—1;p(ze, 1), B(ze, 1))

- A new simplified framework, fixes the variance and rewrite the mean as a function of noise:

1 ( 1—041; ( t))
po = —— - | x4 — = - 29(Tt,
v 1- B

Then, the network is trained to predict noise itself instead of mean and variance

2 :
Lsimple — Etw[l,T]Emowp(wo)]EthN(O,I) ”Zt — <0 (xta t)” 55
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Generative Models: Diffusion Models (DMs)

Diffusion Models (DMs) leverage the concepts of the diffusion process from stochastic calculus and

consists of two main steps:
- Reverse Diffusion Process (Denoising Process) has same iterative procedure, but backwards: the

noise is sequentially removed, and hence, the original image is recreated.

Generate new samples from p(Zo) starting from a random noise zp~ A/(0,I) and following
reverse steps: p(xi—1lze) = N(ze—1;p(ze, 1), B(ze, 1))

- A new simplified framework, fixes the variance and rewrite the mean as a function of noise:

1 ( 1—041; ( t))
po = —— - | x4 — = - 29(Tt,
v 1- B

Then, the network is trained to predict noise itself instead of mean and variance

2 :
Lsimple — Etw[l,T]Emowp(wo)]EthN(O,I) ”Zt — <0 (xta t)” 56
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Major Advances in DMs

Latent Diffusion Model (LDM), and Stable Diffusion Model (SDM)

57
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Major Advances in DMs

Latent Diffusion Model (LDM), and Stable Diffusion Model (SDM)
trains the denoiser network (reverse diffusion) in the latent space instead of image space
uses cross-attention mechanism for conditioning
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Major Advances in DMs

Latent Diffusion Model (LDM), and Stable Diffusion Model (SDM)

trains the denoiser network (reverse diffusion) in the latent space instead of image space
uses cross-attention mechanism for conditioning

Medical Image Generation with Limited Data
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Outline

I1. Major Challenges of Training Generative Models with Limited Data
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Major Challenges

Challenges for Training Generative Models under Data Constraint

- Overfitting
- Frequency Bias

61
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Major Challenges: Training

Overfitting to Training Data

Overfitting. a common issue in machine learning when powerful models start to memorize the
training data instead of learning the generalizable semantics
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Major Challenges: Training

Overfitting to Training Data
Overfitting. a common issue in machine learning when powerful models start to memorize the

training data instead of learning the generalizable semantics

" Mode Collapse. Under data constraints
generative models are more prone to
mode collapse

/|2|3|e
716|176

1]2]0]7
HECIA

Example of mode e collapse on MNIST handwritten digits
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Major Challenges: Training

Overfitting to Training Data
Overfitting. a common issue in machine learning when powerful models start to memorize the

training data instead of learning the generalizable semantics

" Replicate Training Data. Under extreme cases,
the generator just learns to replicate the
training data

" Mode Collapse. Under data constraints
generative models are more prone to
mode collapse

/|2|3|e
7|6|7|6

1]2]0]7
HECIA

Example of mode e collapse on MNIST handwritten digits
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Major Challenges: Training

Frequency Bias: Neural networks learn lower frequencies first

On the Spectral Bias of Neural Networks

Nasim Rahaman“'? Aristide Baratin“' Devansh Arpit' Felix Draxler> Min Lin' Fred A. Hamprecht’
Yoshua Bengio' Aaron Courville !
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Major Challenges: Training

Frequency Bias: generative models prioritize fitting low-frequency components while
disregarding the high-frequency components

Mahyar Khayatkhoei, Ahmed Elgammal

Department of Computer Science, Rutgers University
New Brunswick, New Jersey

Spatial Frequency Bias in Convolutional Generative Adversarial Networks
{m.khayatkhoei, elgammal} @cs.rutgers.edu
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Figure 1: Average power spectrum of a large-scale GAN trained on a fractal-based dataset clearly reveals how the low frequen-
cies (closer to center) are matched much more accurately than the high frequencies (closer to corners). (Left) Average power
spectrum of randomly rotated Koch snowflakes of level 5 and size 1024 x 1024. (Right) Average power spectrum of StyleGAN2
trained on the latter. A representative patch from the perimeter of true and generated fractals are also displayed.
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Major Challenges: Training

Frequency Bias: generative models prioritize fitting low-frequency components while
disregarding the high-frequency components

This bias worsens when data for training is limited.

Exclusion of these high-frequency components which encode intricate image details
significantly impacts the quality of generated samples
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Art Painting

Generated images by FastGAN showing loss of
high-frequency details.

Training data
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Outline

II1. Approaches for Image Generation with Limited Data
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Approaches

Approaches for Image Generation with Limited Data (Training Generative
Models with Limited Data):

1. Transfer Learning
2. Data Augmentation
3. Network Architecture
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Approaches

Approaches for Image Generation with Limited Data (Training Generative
Models with Limited Data):

1. Transfer Learning
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Approaches: Transfer Learning

Transfer Learning in Generative Modeling:
Transfer the knowledge of a pre-trained generator (on a large and diverse dataset) to a target domain
with limited data
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Approaches: Transfer Learning

Transfer Learning in Generative Modeling:
Transfer the knowledge of a pre-trained generator (on a large and diverse dataset) to a target domain
with limited data

w [nitialize the generator G, with weights of pre-trained generator Ggq

w Fine-tune G, using limited data from target domain

= General knowledge (domain-agnostic) from Gy is useful for target domain, and the
domain-specific knowledge needs to be acquired using limited data from target domain
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Approaches: Transfer Learning

Transfer Learning in Generative Modeling:
Transfer the knowledge of a pre-trained generator (on a large and diverse dataset) to a target domain
with limited data

w [nitialize the generator G, with weights of pre-trained generator Ggq

w Fine-tune G, using limited data from target domain

= General knowledge (domain-agnostic) from Gy is useful for target domain, and the
domain-specific knowledge needs to be acquired using limited data from target domain

Adapted generator to “Van

Gogh’s House” using limited data
73



Milad Abdollahzadeh Medical Image Generation with Limited Data Feb 5, 2025

Approaches: Transfer Learning

Transfer Learning in Generative Modeling:
Transfer the knowledge of a pre-trained generator (on a large and diverse dataset) to a target domain
with limited data

w [nitialize the generator G, with weights of pre-trained generator Ggq

w Fine-tune G, using limited data from target domain

= General knowledge (domain-agnostic) from Gy is useful for target domain, and the
domain-specific knowledge needs to be acquired using limited data from target domain

Knowledge Transfer
——-->» 21— G

Pre-trained generator on Adapted generator to “Van

“LSUN-Church” domain Gogh’s House” using limited data
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Approaches: Transfer Learning

1in

Similar approach can be applied to
Medical Image Generation conditioned
on having a powerful source model
L trained on medical data! y
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Approaches: Transfer Learning

Major Limitation

Because of data constraints on target domain, the general knowledge can be degraded during
fine-tuning generator on target data (acquiring the domain-specific knowledge)
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Approaches: Transfer Learning

Major Limitation
Because of data constraints on target domain, the general knowledge can be degraded during
fine-tuning generator on target data (acquiring the domain-specific knowledge)

Example. Adapting a generator trained on human faces (FFHQ) to
painting of human faces (e.g., Fernand Léger):

e Shared (general) knowledge: face structure, diversity in pose,
hairstyle, ...

e Domain-specific knowledge: the style of the paining with
Fernand Leger
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Approaches: Transfer Learning

Major Limitation
Because of data constraints on target domain, the general knowledge can be degraded during
fine-tuning generator on target data (acquiring the domain-specific knowledge)

Example. Adapting a generator trained on human faces (FFHQ) to
painting of human faces (e.g., Fernand Léger):

e Shared (general) knowledge: face structure, diversity in pose,
hairstyle, ...

e Domain-specific knowledge: the style of the paining with
Fernand Leger

Result. Conventional transfer learning results in missing . :
general knowledge: losing diversity and only containing the Training Generated images by

adapting a pre-trained
target Style examples StyleGAN on FFHQ to

Fernand Léger Painting

Li, Yijun, et al. "Few-shot image generation with elastic weight consolidation." NeurIPS'20. 8
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Approaches: Transfer Learning

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to
preserve the knowledge in the pre-trained generator
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Approaches: Transfer Learning

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to
preserve the knowledge in the pre-trained generator

Cross-Domain Correspondence (CDC)

. 80
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Approaches: Transfer Learning

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to
preserve the knowledge in the pre-trained generator

. Cross-Domain Correspondence (CDC)

. Key Observation. Overfitting in transfer
. learning, leads to the loss of

. correspondence between images

. generated by source and target domain

Z3

Zy Zy Zy
4 . o
Source G : B
F 5

Overfit Gg_¢

L 81
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Approaches: Transfer Learning

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to
preserve the knowledge in the pre-trained generator

- Cross-Domain Correspondence (CDC)  Objective. Add a regularizer to preserve the correspondence
. Key Observation. Overfitting in transfer ~ between generated images before and after adapting the :

- learning, leads to the loss of generator to target domain
correspondence between lmages . Source Model  Few-shot Adaptation
. generated by source and target domain

S

.
o ( -sf_
e

S

vw@

4>| Softmax + KL-Divergence |47

OJha Utkarsh, et al. "Few-shot image generation via cross-domain correspondence." CVPR21. . 82
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Approaches: Transfer Learning

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to
preserve the knowledge in the pre-trained generator

Cross-Domain Correspondence (CDC) Approach:

Source Model  Few-shot Adaptation @ .
R /> e Sample N+1 noise vectors

-
DR - R
g._—sfv“

—’l Softmax + KL-Divergence |<—
. 83

OJha Utkarsh, et al. "Few-shot image generation via cross-domain correspondence." CVPR21.
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Approaches: Transfer Learning

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to
preserve the knowledge in the pre-trained generator

Cross-Domain Correspondence (CDC) Approach:

Source Model  Few-shot Adaptation @ .
‘ . /> e Sample N+1 noise vectors

2 N, P b3 e Compute pairwise similarity scores s, between
a Bl images generated by these noise vectors
) e
__St ]
-/
=
s—)t

—’l Softmax + KL-Divergence I<—
. 84

OJha Utkarsh, et al. "Few-shot image generation via cross-domain correspondence." CVPR21.
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Approaches: Transfer Learning

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to
preserve the knowledge in the pre-trained generator

Cross-Domain Correspondence (CDC) Approach:

Source Model  Few-shot Adaptation @ .
. R e Sample N+1 noise vectors
= b3 > e Compute pairwise similarity scores s, between
QGS zy |Gsot I i

images generated by these noise vectors

Tst B e Construct N-way probability distribution by
ﬂ ! applying softmax on similarity scores

) e
Gs g st y3! = Softmax ({sim(G% (z;),G(2;)) }vi;)
' . y; """ = Softmax ({sim(G'_.,(z:), G4_4(25)) Ivins)
N | B
s—)t

—Pl Softmax + KL-Divergence I<—
. 85

OJha Utkarsh, et al. "Few-shot image generation via cross-domain correspondence." CVPR21.
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Approaches: Transfer Learning

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to
preserve the knowledge in the pre-trained generator

Cross-Domain Correspondence (CDC) Approach:
. Source Model  Few-shot Adaptation g le N+1 . ¢
L verons S e Sample N+1 noise vectors
2] [ b3 > e Compute pairwise similarity scores s, between
a - Bl images generated by these noise vectors
- | e Construct N-way probability distribution by
G E ! applying softmax on similarity scores

S

UDE

1=
( st y"! = Softmax ({sim(GY (), G4 () bvizes)
ol | 2 = Softmax ({sim(Gl ., (21), Go(25)) i)
g . sy e Enforce adapted model to have similar
distributions to the source

—Pl Softmax + KL-Divergence |<— Ldlst(Gs—da Gs ) ]E{z ~p.(z)} Z DKL g=b l||y;‘s’l)

OJha Utkarsh, et al. "Few-shot image generation via cross-domain correspondence." CVPR21. : 86
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Approaches: Transfer Learning

Regularizer-based Fine-Tuning: These approaches add a regularizer term to the main objective to
preserve the knowledge in the pre-trained generator

Cross-Domain Correspondence (CDC)

. Qualitative Results.
. 10-shot adaptation
. (FFHQ= Sketches)

TGAN

TGAN
+ ADA

FreezeD

MineGAN :

EWC

Y @ {1 |Ours
Real
sketches Source

. 87
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Approaches

Approaches for Image Generation with Limited Data (Training Generative
Models with Limited Data):

2. Data Augmentation
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Medical Image Generation with Limited Data

Approaches: Data Augmentation

Data Augmentation in Generative Modeling

e Data augmentation aims to increase the quantity and diversity of the training data by applying some
transformations in real data, e.g., adding noise, rotating images, ...
e Increased quantity can prevent overfitting of the generative model

Pixel blitting

General geometric transformations

-
90° R r o S:-'
rotations wa » ‘
Integer 5 _,‘_» ‘./' 1
translation . = 5 <

Isotropic ? , ’ ?
scaling b %A A e
Arbitrary N ;'.) ‘ Y
e - ‘P
Anisotropic * ? ’ ,
scaling W A . LA
Fractional [ l R ’
translation - 54 =j

Color transformations

Brightness 7 , g_
- -
*44 ‘J.'- ' '
Ve G

Hue : ’\3
rotation i - VAl

S E-NE- -
Saturation 4 s/ 9 )

Luma
flip
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Approaches: Data Augmentation

Major Limitation of Classical Data Augmentation in Generative Learning

Generator learns the augmented data distribution instead of the real distribution and generate image with
same transformations

Z—» G _—
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Approaches: Data Augmentation

Image-Level Augmentation: Apply data transformation on image space.
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Approaches: Data Augmentation

Image-Level Augmentation: Apply data transformation on image space.

Adaptive Data Augmentation (ADA): apply augmentation to the both real and fake images with an
. adjustable probability based on the training dynamics

Karras, Tero, et al. "Training generative adversarial networks with limited data." NeurIPS'20. 92



Milad Abdollahzadeh

Feb 5, 2025

Approaches: Data Augmentation

Image-Level Augmentation: Apply data transformation on image space.

Medical Image Generation with Limited Data

Adaptive Data Augmentation (ADA): apply augmentation to the both real and fake images with an

adjustable probability based on the training dynamics

Approach. ADA includes following components:

Latents Reals  Latents
e Augmentation is applied to both real and fake images + p +
(in training both D and G) G | G
e The augmentation is applied with a probability p<1 to Lo e )
enable the occurrence of the real distribution Aug Aug Aug
4 4 i}
D D
! J

(—f®) Cf(=)
(__ Dloss )

Karras, Tero, et al. "Training generative adversarial networks with limited data." NeurIPS'20. 93
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Approaches: Data Augmentation

Image-Level Augmentation: Apply data transformation on image space.

Adaptive Data Augmentation (ADA): apply augmentation to the both real and fake images with an
. adjustable probability based on the training dynamics

Approach. ADA includes following components:

Latents Reals  Latents
e Augmentation is applied to both real and fake images + p +
(in training both D and G) G | G
e The augmentation is applied with a probability p<1 to L e 1
enable the occurrence of the real distribution Aug Aug Aug
e The strength of the augmentation (p) is adjusted based 1 T T
on the degree of overfitting D D
! J

(—f®) Cf(=)
(__ Dloss )

Karras, Tero, et al. "Training generative adversarial networks with limited data." NeurIPS'20.
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Approaches: Data Augmentation

Image-Level Augmentation: Apply data transformation on image space.

Adaptive Data Augmentation (ADA): apply augmentation to the both real and fake images with an
. adjustable probability based on the training dynamics

Approach. ADA includes following components:

Latents Reals  Latents
e Augmentation is applied to both real and fake images + p +
(in training both D and G) G | G
e The augmentation is applied with a probability p<1 to l i e 4', 1
enable the occurrence of the real distribution Aug Aug Aug
e The strength of the augmentation (p) is adjusted based 1 1 7
on the degree of overfitting D D
e Two heuristics are proposed to monitor the overfitting 1) 1
. ElDuin] ~ E[Duatduion e = E[sign(Dyis)] (—f®) Cf()
IE[Dtrain] - E[D generated]
r=0 means no overfitting, and r=1 indicates complete overfitting ( D loss )

Karras, Tero, et al. "Training generative adversarial networks with limited data." NeurIPS'20. 95
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Approaches: Data Augmentation

Image-Level Augmentation: Apply data transformation on image space.

- Adaptive Data Augmentation (ADA): apply augmentation to the both real and fake images with an
. adjustable probability based on the training dynamics

Real images from the training set

Results
. MetFaces dataset (1336
: images) of art paintings

Original StyleGAN?2 config F, untruncated

ADA (Ours), untruncated

) FID 19.47 - KID 3.16x10° — Recall 0.350

FID 15.34 — KID 0.81x10° — Recall 0.261

Karras, Tero, et al. "Training generative adversarial networks with limited data." NeurIPS'20. 96
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Approaches: Data Augmentation

Image-Level Augmentation: Apply data transformation on image space.

. Adaptive Data Augmentation (ADA): apply augmentation to the both real and fake images with an
adjustable probability based on the training dynamics

Results Real images from the training st ADA (Ours), untruncated Original StyleGAN? config F, untruncated
. BreCaHAD dataset (1944 SIS 757 @m0 o UF e
. images) for breast e
. cancer annotation
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Approaches: Data Augmentation

Image-Level Augmentation: Apply data transformation on image space.

Adaptive Data Augmentation (ADA)

Evaluating the Performance of StyleGAN2-ADA
on Medical Images

McKell Woodland!2, John Wood!, Brian M. Anderson'+*, Suprateek Kundu!
Ethan Lin!, Eugene Koay!, Bruno Odisio!, Caroline Chung', Hyunseon
Christine Kang', Aradhana M. Venkatesan®, Sireesha Yedururi!, Brian De!,
Yuan-Mao Lin!, Ankit B. Patel?3, and Kristy K. Brock!

1 The University of Texas MD Anderson Cancer Center, Houston TX 77030, USA
MEWoodland@mdanderson.org
2 Rice University, Houston TX 77005, USA
3 Baylor College of Medicine, Houston TX 77030, USA
4 University of California San Diego, La Jolla CA 92093, USA

Karras, Tero, et al. "Training generative adversarial networks with limited data." NeurIPS'20. 98
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Approaches: Data Augmentation

Image-Level Augmentation: Apply data transformation on image space.

Start from a

N

Z

=] - pre-trained

i;‘ StyleGAN2-ADA on
@ FFHQ and fine-tune
B on the SLIVER0O7
2 dataset

m
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Approaches

Approaches for Image Generation with Limited Data (Training Generative
Models with Limited Data):

3. Network Architecture
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Comprehensive Review: Network Architecture

Network Architecture
Design specific architectures for the generators to improve their training performance under data
constraints. Like designing shallow/sparse architectures to prevent over-parameterization.
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Comprehensive Review: Network Architecture

Network Architecture
Design specific architectures for the generators to improve their training performance under data
constraints. Like designing shallow/sparse architectures to prevent over-parameterization.

Primary Challenge/Limitation

e When aiming to design a new architecture, the process of discovering optimal hyperparameters can be

laborious
e Designing new architecture prevents leveraging the powerful pre-trained generators
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Comprehensive Review: Network Architecture

Feature Enhancement: Design additional modules to enhance/retain the features of the generator

103



Milad Abdollahzadeh Medical Image Generation with Limited Data Feb 5, 2025

Comprehensive Review: Network Architecture

Feature Enhancement: Design additional modules to enhance/retain the features of the generator

. FastGAN has three major design choices:

. i) Using a compact size network for both G and D in GAN
ii) introducing Skip-layer excitation for G for better gradient flow
iii) adding self-supervised task for D

Liu, Bingchen, et al. "Towards faster and stabilized gan training for high-fidelity few-shot image synthesis." ICLR20.
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Comprehensive Review: Network Architecture

Feature Enhancement: Design additional modules to enhance/retain the features of the generator

. FastGAN has three major design choices:

. i) Using a compact size network for both G and D in GAN
ii) introducing Skip-layer excitation for G for better gradient flow
iii) adding self-supervised task for D

Results of training FastGAN from scratch on 10242 resolution using single RTX 2080-Ti GPU with only
1000 images. Left: 20 hours on Nature photos; Right: 10 hours on FFHQ.

| Liu, Bingchen, et al. "Towards faster and stabilized gan training for high-fidelity few-shot image synthesis." ICLR’20.
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Comprehensive Review: Network Architecture

Feature Enhancement: Design additional modules to enhance/retain the features of the generator

. FastGAN
. Design of Generator (G):
. e Usea single Conv-layer for each resolution

e Use skip-layer excitation including skip connection and connection between different resolutions for
better gradient flow during training G

Feature-map Feature-map

42 ConvTranspose >
4x4 s:1, p:0 1
BatchNorm + GLU

[RE4x128x128 [R512x8x8

B ISR T R ;—)' S ) Input vector

: : Nearest Upsample x 2 channel: 256

H Adaptive pooling H Conv 3x3, s:1, p:1

' output size: 4 x 4 1 BatchNorm + GLU

1 1

: :

1 Skip-layer 1 _» Sku:.l-la_yer

1 P 1 excitation

1 excitation LeakyRelLU (0.1) 1 *

1 1

1 1 g

1 Conv 1x1, s:1, p:0 ' 162 Skip-layer

) ] excitation

1 1

; : Conv 363, 511, pid
Skip-layer Tanh

1 1 A

. i 322

1 X~LTTTTTTT] s

1 64x1x1 1

CasasncresasaBi e =)

[ 642 |—| 1282 | [128% }=[2562| [2562 |=]5122] [5122 |=] 10247]
RMXlQSX]ZR

The forward flow of our Generator

| Liu, Bingchen, et al. "Towards faster and stabilized gan training for high-fidelity few-shot image synthesis." ICLR’20.
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Comprehensive Review: Network Architecture

Feature Enhancement: Design additional modules to enhance/retain the features of the generator

. FastGAN
. Design of Discriminator (D):

e Use a compact design for D
e Add reconstruction loss in two different resolution (additional task as auto-encoder) to improve learning
of D using additional supervisory signal

Conv 4x4, s:2, p:1 l Down pl |—> I c R!?%
LeakyRelLU

BatchNorm + LeakyRelLU . 10242
Real image C R

v
v

Simple Decoder

Nearest Upsample x 2

Conv 3x3, s:1, p:1 X 4.

BatchNorm + GLU

2
Loy © R128 |

2 2
I;’zarl c RIZS | |1/ c R128

v £ 5
Conv 4x4, s:2, p:1 Average pool 2x2 Dsel‘r:rx‘:::r Dsem:)':ile 2
coder ;
BatchNorm + LeakyReLU Conv 1x1, s:1, p:0 | Reallfake logits C 5 |

Conv:3x3, 8:1, p:1 BatchNorm + LeakyRelLU

BatchNorm + LeakyRelLU

Conv 1x1, s:1, p:0

?
L»@——| 1282 | | 642 | [ 322} | 16— 82 |——— "ot stpo

| Liu, Bingchen, et al. "Towards faster and stabilized gan training for high-fidelity few-shot image synthesis." ICLR’20.
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Comprehensive Review: Network Architecture

Feature Enhancement: Design additional modules to enhance/retain the features of the generator

. FastGAN

[0 README &3 MIT license

E . g J
“.‘-;E @ P
. ’ A
W P

o :'ld x ,” F o SR D !g‘I i ey

[ license [MERY () Build and test |passing | pypi package [1:0:0] conda-forge v1.0.0 | DOI ' 10.5281/zenodo.6327625

medigan stands for medical generative (adversarial) networks. medigan provides user-friendly medical image
synthesis and allows users to choose from a range of pretrained generative models to generate synthetic
datasets. These synthetic datasets can be used to train or adapt Al models that perform clinical tasks such as
lesion classification, segmentation or detection.

See below how medigan can be run from the command line to generate synthetic medical images.

https: //github.com /RichardObi/medigan

| Liu, Bingchen, et al. "Towards faster and stabilized gan training for high-fidelity few-shot image synthesis." ICLR’20. 1108
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Comprehensive Review: Network Architecture

Feature Enhancement: Design additional modules to enhance/retain the features of the generator

. FastGAN

Output . Model Output Base Output )
Modality . model_id
type type size dataset examples

Polyp with
endoscopy fastgan 256x256 HyperKvasir 00010_FASTGAN_POLYP_PATCHES_W_MASKS

Mask

| Liu, Bingchen, et al. "Towards faster and stabilized gan training for high-fidelity few-shot image synthesis." ICLR’20.






